
A travelling wave on a string is given by y $ = $A sin$\left[ {\alpha x + \beta t + \dfrac{\pi }{6}} \right]$. The displacement and velocity of oscillation of a point $\alpha = 0.56/cm,\,\,\beta = 12/\sec \,A = 7.5cm,x = 1cm$ and $t = 1s$ is
A. $4.6cm,\,\,46.5cm{s^{ - 1}}$
B. $3.75cm,\,\,77.94cm{s^{ - 1}}$
C. $1.76cm,\,\,7.5cm{s^{ - 1}}$
D. $7.5cm,\,\,75cm{s^{ - 1}}$
Answer
573.6k+ views
Hint: The travelling waves are the wave in which the position of maximum and minimum amplitude travel through the medium. Mathematically, A travelling wave is a periodic function of one dimensional space that moves with constant speed. The standard equation of a travelling wave is given as, $y\left( {x,t} \right) = A\,\sin \,\left( {wt \pm kx + \phi } \right)$.
Complete step by step solution:
Given that $\alpha = 0.56/cm,\,\,\beta = 12/\sec \,A = 7.5cm,x = 1cm$and $t = 1s$
The displacement of travelling wave is,
$y = A\,\,\sin \,\,\,\left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)......\left( i \right)$
Putting the above values in equation (i)
$y = 7.5\,\,\sin \left[ {\left( {0.56} \right)\left( 1 \right) + \left( {12} \right) \times \left( 1 \right) + \dfrac{\pi }{6}} \right]$
$y \simeq 7.5 \times 0.5$
$y \simeq 3.75cm$
The velocity of the travelling wave $v = \dfrac{{dy}}{{dt}}$
Putting the value of y from equation (i) into $v = \dfrac{{dy}}{{dt}}$
So, $v = \dfrac{{dy}}{{dt}}\left[ {A\,\sin \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)} \right]$
$\Rightarrow$ \[v = A\dfrac{d}{{dt}}\left[ {\sin \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)} \right]\]
$\Rightarrow$ \[v = A\beta \,\cos \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)\]
$\Rightarrow$ $v = 7.5 \times 12 \times \cos \left[ {\left( {0.56} \right)\left( 1 \right) + 12 \times 1 + \dfrac{\pi }{6}} \right]$
$\Rightarrow$ $v \simeq 7.5 \times 12 \times 0.8$
$\Rightarrow$ $v \simeq 77.94cm/s$
Hence, option (B) is correct.
Additional Information: If displacement equation of travelling wave is given say y then the velocity will be $v = \dfrac{{dy}}{{dt}}.$
Note: The travelling waves transport energy from one area of space to another, whereas standing waves do not transport energy.
Complete step by step solution:
Given that $\alpha = 0.56/cm,\,\,\beta = 12/\sec \,A = 7.5cm,x = 1cm$and $t = 1s$
The displacement of travelling wave is,
$y = A\,\,\sin \,\,\,\left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)......\left( i \right)$
Putting the above values in equation (i)
$y = 7.5\,\,\sin \left[ {\left( {0.56} \right)\left( 1 \right) + \left( {12} \right) \times \left( 1 \right) + \dfrac{\pi }{6}} \right]$
$y \simeq 7.5 \times 0.5$
$y \simeq 3.75cm$
The velocity of the travelling wave $v = \dfrac{{dy}}{{dt}}$
Putting the value of y from equation (i) into $v = \dfrac{{dy}}{{dt}}$
So, $v = \dfrac{{dy}}{{dt}}\left[ {A\,\sin \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)} \right]$
$\Rightarrow$ \[v = A\dfrac{d}{{dt}}\left[ {\sin \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)} \right]\]
$\Rightarrow$ \[v = A\beta \,\cos \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)\]
$\Rightarrow$ $v = 7.5 \times 12 \times \cos \left[ {\left( {0.56} \right)\left( 1 \right) + 12 \times 1 + \dfrac{\pi }{6}} \right]$
$\Rightarrow$ $v \simeq 7.5 \times 12 \times 0.8$
$\Rightarrow$ $v \simeq 77.94cm/s$
Hence, option (B) is correct.
Additional Information: If displacement equation of travelling wave is given say y then the velocity will be $v = \dfrac{{dy}}{{dt}}.$
Note: The travelling waves transport energy from one area of space to another, whereas standing waves do not transport energy.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

