
A travelling wave on a string is given by y $ = $A sin$\left[ {\alpha x + \beta t + \dfrac{\pi }{6}} \right]$. The displacement and velocity of oscillation of a point $\alpha = 0.56/cm,\,\,\beta = 12/\sec \,A = 7.5cm,x = 1cm$ and $t = 1s$ is
A. $4.6cm,\,\,46.5cm{s^{ - 1}}$
B. $3.75cm,\,\,77.94cm{s^{ - 1}}$
C. $1.76cm,\,\,7.5cm{s^{ - 1}}$
D. $7.5cm,\,\,75cm{s^{ - 1}}$
Answer
510k+ views
Hint: The travelling waves are the wave in which the position of maximum and minimum amplitude travel through the medium. Mathematically, A travelling wave is a periodic function of one dimensional space that moves with constant speed. The standard equation of a travelling wave is given as, $y\left( {x,t} \right) = A\,\sin \,\left( {wt \pm kx + \phi } \right)$.
Complete step by step solution:
Given that $\alpha = 0.56/cm,\,\,\beta = 12/\sec \,A = 7.5cm,x = 1cm$and $t = 1s$
The displacement of travelling wave is,
$y = A\,\,\sin \,\,\,\left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)......\left( i \right)$
Putting the above values in equation (i)
$y = 7.5\,\,\sin \left[ {\left( {0.56} \right)\left( 1 \right) + \left( {12} \right) \times \left( 1 \right) + \dfrac{\pi }{6}} \right]$
$y \simeq 7.5 \times 0.5$
$y \simeq 3.75cm$
The velocity of the travelling wave $v = \dfrac{{dy}}{{dt}}$
Putting the value of y from equation (i) into $v = \dfrac{{dy}}{{dt}}$
So, $v = \dfrac{{dy}}{{dt}}\left[ {A\,\sin \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)} \right]$
$\Rightarrow$ \[v = A\dfrac{d}{{dt}}\left[ {\sin \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)} \right]\]
$\Rightarrow$ \[v = A\beta \,\cos \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)\]
$\Rightarrow$ $v = 7.5 \times 12 \times \cos \left[ {\left( {0.56} \right)\left( 1 \right) + 12 \times 1 + \dfrac{\pi }{6}} \right]$
$\Rightarrow$ $v \simeq 7.5 \times 12 \times 0.8$
$\Rightarrow$ $v \simeq 77.94cm/s$
Hence, option (B) is correct.
Additional Information: If displacement equation of travelling wave is given say y then the velocity will be $v = \dfrac{{dy}}{{dt}}.$
Note: The travelling waves transport energy from one area of space to another, whereas standing waves do not transport energy.
Complete step by step solution:
Given that $\alpha = 0.56/cm,\,\,\beta = 12/\sec \,A = 7.5cm,x = 1cm$and $t = 1s$
The displacement of travelling wave is,
$y = A\,\,\sin \,\,\,\left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)......\left( i \right)$
Putting the above values in equation (i)
$y = 7.5\,\,\sin \left[ {\left( {0.56} \right)\left( 1 \right) + \left( {12} \right) \times \left( 1 \right) + \dfrac{\pi }{6}} \right]$
$y \simeq 7.5 \times 0.5$
$y \simeq 3.75cm$
The velocity of the travelling wave $v = \dfrac{{dy}}{{dt}}$
Putting the value of y from equation (i) into $v = \dfrac{{dy}}{{dt}}$
So, $v = \dfrac{{dy}}{{dt}}\left[ {A\,\sin \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)} \right]$
$\Rightarrow$ \[v = A\dfrac{d}{{dt}}\left[ {\sin \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)} \right]\]
$\Rightarrow$ \[v = A\beta \,\cos \left( {\alpha x + \beta t + \dfrac{\pi }{6}} \right)\]
$\Rightarrow$ $v = 7.5 \times 12 \times \cos \left[ {\left( {0.56} \right)\left( 1 \right) + 12 \times 1 + \dfrac{\pi }{6}} \right]$
$\Rightarrow$ $v \simeq 7.5 \times 12 \times 0.8$
$\Rightarrow$ $v \simeq 77.94cm/s$
Hence, option (B) is correct.
Additional Information: If displacement equation of travelling wave is given say y then the velocity will be $v = \dfrac{{dy}}{{dt}}.$
Note: The travelling waves transport energy from one area of space to another, whereas standing waves do not transport energy.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
