
A train travelling at a speed of \[75\]mph enters a tunnel \[3.5{\text{ }}\]miles long. The train is $\dfrac{1}{4}$ mile long. How long does it take for the train to pass through the tunnel from the moment the front enters to the moment the rear emerges?
\[{\mathbf{A}}.2\]min
\[{\mathbf{B}}.3\]min
\[{\mathbf{C}}.4\]min
\[{\mathbf{D}}.5\]min
Answer
525.6k+ views
Hint: In this problem, we need to calculate the total time taken, we will add the length of tunnel and train so that we can get the total distance and then use Speed \[ = \]$\dfrac{{Dis\tan ce}}{{Time}}$
Complete step by step solution:
We are given that :
Speed of the train \[ = {\text{ }}75km/h\]
Length of the tunnel \[ = {\text{ }}3\dfrac{1}{2}miles\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2}\]
Also, the length of the train \[ = \dfrac{1}{4}miles\]
Now, we need to find the time taken to pass through the tunnel.
So Total distance \[ = \] Length of the tunnel \[ + \] Length of train
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2} + \dfrac{1}{4} = \dfrac{{15}}{4}miles\]
As we know, Time Taken \[ = \dfrac{{TotalDis\tan ce}}{{Speed}}\]
\[ = \dfrac{{\left( {\dfrac{{15}}{4}} \right)}}{{75}} = \dfrac{1}{{20}}\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{1}{{20}} \times 60\]minutes (converting into minutes )
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {\text{ }}3\] minutes.
So, time is taken to pass the tunnel \[ = {\text{ }}3\]minutes.
$\therefore $Option ‘B’ is correct.
Note: In questions like these,do not forget to add the length of both the tunnel and the train because total distance travelled by train would be both length of tunnel and the length of train.
Complete step by step solution:
We are given that :
Speed of the train \[ = {\text{ }}75km/h\]
Length of the tunnel \[ = {\text{ }}3\dfrac{1}{2}miles\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2}\]
Also, the length of the train \[ = \dfrac{1}{4}miles\]
Now, we need to find the time taken to pass through the tunnel.
So Total distance \[ = \] Length of the tunnel \[ + \] Length of train
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2} + \dfrac{1}{4} = \dfrac{{15}}{4}miles\]
As we know, Time Taken \[ = \dfrac{{TotalDis\tan ce}}{{Speed}}\]
\[ = \dfrac{{\left( {\dfrac{{15}}{4}} \right)}}{{75}} = \dfrac{1}{{20}}\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{1}{{20}} \times 60\]minutes (converting into minutes )
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {\text{ }}3\] minutes.
So, time is taken to pass the tunnel \[ = {\text{ }}3\]minutes.
$\therefore $Option ‘B’ is correct.
Note: In questions like these,do not forget to add the length of both the tunnel and the train because total distance travelled by train would be both length of tunnel and the length of train.
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

10 examples of evaporation in daily life with explanations
