
A train travelling at a speed of \[75\]mph enters a tunnel \[3.5{\text{ }}\]miles long. The train is $\dfrac{1}{4}$ mile long. How long does it take for the train to pass through the tunnel from the moment the front enters to the moment the rear emerges?
\[{\mathbf{A}}.2\]min
\[{\mathbf{B}}.3\]min
\[{\mathbf{C}}.4\]min
\[{\mathbf{D}}.5\]min
Answer
574.5k+ views
Hint: In this problem, we need to calculate the total time taken, we will add the length of tunnel and train so that we can get the total distance and then use Speed \[ = \]$\dfrac{{Dis\tan ce}}{{Time}}$
Complete step by step solution:
We are given that :
Speed of the train \[ = {\text{ }}75km/h\]
Length of the tunnel \[ = {\text{ }}3\dfrac{1}{2}miles\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2}\]
Also, the length of the train \[ = \dfrac{1}{4}miles\]
Now, we need to find the time taken to pass through the tunnel.
So Total distance \[ = \] Length of the tunnel \[ + \] Length of train
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2} + \dfrac{1}{4} = \dfrac{{15}}{4}miles\]
As we know, Time Taken \[ = \dfrac{{TotalDis\tan ce}}{{Speed}}\]
\[ = \dfrac{{\left( {\dfrac{{15}}{4}} \right)}}{{75}} = \dfrac{1}{{20}}\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{1}{{20}} \times 60\]minutes (converting into minutes )
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {\text{ }}3\] minutes.
So, time is taken to pass the tunnel \[ = {\text{ }}3\]minutes.
$\therefore $Option ‘B’ is correct.
Note: In questions like these,do not forget to add the length of both the tunnel and the train because total distance travelled by train would be both length of tunnel and the length of train.
Complete step by step solution:
We are given that :
Speed of the train \[ = {\text{ }}75km/h\]
Length of the tunnel \[ = {\text{ }}3\dfrac{1}{2}miles\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2}\]
Also, the length of the train \[ = \dfrac{1}{4}miles\]
Now, we need to find the time taken to pass through the tunnel.
So Total distance \[ = \] Length of the tunnel \[ + \] Length of train
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2} + \dfrac{1}{4} = \dfrac{{15}}{4}miles\]
As we know, Time Taken \[ = \dfrac{{TotalDis\tan ce}}{{Speed}}\]
\[ = \dfrac{{\left( {\dfrac{{15}}{4}} \right)}}{{75}} = \dfrac{1}{{20}}\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{1}{{20}} \times 60\]minutes (converting into minutes )
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {\text{ }}3\] minutes.
So, time is taken to pass the tunnel \[ = {\text{ }}3\]minutes.
$\therefore $Option ‘B’ is correct.
Note: In questions like these,do not forget to add the length of both the tunnel and the train because total distance travelled by train would be both length of tunnel and the length of train.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

Distinguish between the reserved forests and protected class 10 biology CBSE

