
A train travelling at a speed of \[75\]mph enters a tunnel \[3.5{\text{ }}\]miles long. The train is $\dfrac{1}{4}$ mile long. How long does it take for the train to pass through the tunnel from the moment the front enters to the moment the rear emerges?
\[{\mathbf{A}}.2\]min
\[{\mathbf{B}}.3\]min
\[{\mathbf{C}}.4\]min
\[{\mathbf{D}}.5\]min
Answer
588k+ views
Hint: In this problem, we need to calculate the total time taken, we will add the length of tunnel and train so that we can get the total distance and then use Speed \[ = \]$\dfrac{{Dis\tan ce}}{{Time}}$
Complete step by step solution:
We are given that :
Speed of the train \[ = {\text{ }}75km/h\]
Length of the tunnel \[ = {\text{ }}3\dfrac{1}{2}miles\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2}\]
Also, the length of the train \[ = \dfrac{1}{4}miles\]
Now, we need to find the time taken to pass through the tunnel.
So Total distance \[ = \] Length of the tunnel \[ + \] Length of train
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2} + \dfrac{1}{4} = \dfrac{{15}}{4}miles\]
As we know, Time Taken \[ = \dfrac{{TotalDis\tan ce}}{{Speed}}\]
\[ = \dfrac{{\left( {\dfrac{{15}}{4}} \right)}}{{75}} = \dfrac{1}{{20}}\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{1}{{20}} \times 60\]minutes (converting into minutes )
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {\text{ }}3\] minutes.
So, time is taken to pass the tunnel \[ = {\text{ }}3\]minutes.
$\therefore $Option ‘B’ is correct.
Note: In questions like these,do not forget to add the length of both the tunnel and the train because total distance travelled by train would be both length of tunnel and the length of train.
Complete step by step solution:
We are given that :
Speed of the train \[ = {\text{ }}75km/h\]
Length of the tunnel \[ = {\text{ }}3\dfrac{1}{2}miles\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2}\]
Also, the length of the train \[ = \dfrac{1}{4}miles\]
Now, we need to find the time taken to pass through the tunnel.
So Total distance \[ = \] Length of the tunnel \[ + \] Length of train
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{7}{2} + \dfrac{1}{4} = \dfrac{{15}}{4}miles\]
As we know, Time Taken \[ = \dfrac{{TotalDis\tan ce}}{{Speed}}\]
\[ = \dfrac{{\left( {\dfrac{{15}}{4}} \right)}}{{75}} = \dfrac{1}{{20}}\]
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \dfrac{1}{{20}} \times 60\]minutes (converting into minutes )
\[\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = {\text{ }}3\] minutes.
So, time is taken to pass the tunnel \[ = {\text{ }}3\]minutes.
$\therefore $Option ‘B’ is correct.
Note: In questions like these,do not forget to add the length of both the tunnel and the train because total distance travelled by train would be both length of tunnel and the length of train.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

