
A train passes a pole in \[5{\text{ }}sec\] and a platform of \[50{\text{ }}m\] long in \[10{\text{ }}sec\].Find the length of the train.
Answer
591.6k+ views
Hint: While applying formula for speed, the speed of the train remains the same while passing a pole or crossing a platform. If you wish to calculate speed, the formula is ,$\dfrac{d}{t}$ remains which becomes the formula for speed $t$, similarly for distance and time we can obtain the formulas from this.
Complete step by step solution:
Let the length of the train be meters.
Case 1: when train passes a pole
Speed of the train,$s = \dfrac{{distance\,(train\,\,length)}}{{time}}$
$ \Rightarrow s = \dfrac{x}{5}m/s$ \[........\left( 1 \right)\]
Case 2: When train crosses the platform,
Speed of the train $ = \dfrac{{distance\,(platform\,\,length)}}{{time}}$
Since, the distance is length of the train and length of the platform (because train will pass the platform with its length),
Speed of train $ = $\[\dfrac{{length{\text{ }}of{\text{ }}train{\text{ }} + {\text{ length of }}platform}}{{Time}}\]
$ \Rightarrow s = \dfrac{{x + 50}}{{10}}m/s$ \[.......\left( 2 \right)\]
From \[\left( 1 \right){\text{ }}and{\text{ }}\left( 2 \right),\]we will get
$\dfrac{x}{5} = \dfrac{{x + 50}}{{10}}$
$ \Rightarrow \dfrac{x}{1} = \dfrac{{x + 50}}{2}$
By cross multiplying the terms in the above expression, we will get
\[2x = x + 50\]
\[ \Rightarrow 2x - {\text{x}} = 50\]
$ \Rightarrow x = 50$
$ \Rightarrow $Length of train\[ = 50\]meters.
Additional Information: We can convert units of speed in the following ways:
$\left( i \right){\text{ }}x{\text{ }}km/hr = \left( {x \times \dfrac{5}{{18}}} \right)m/s.$
$\left( {ii} \right)\;x{\text{ }}m/s = \left( {x \times \dfrac{{18}}{5}} \right)km/hr.$
Note: Time taken by a train of length (\[{\text{l}}\]meters) to pass object of length (\[{\text{b}}\]meters) is the time taken by train to cover \[\left( {l + b} \right)\] meters.
Complete step by step solution:
Let the length of the train be meters.
Case 1: when train passes a pole
Speed of the train,$s = \dfrac{{distance\,(train\,\,length)}}{{time}}$
$ \Rightarrow s = \dfrac{x}{5}m/s$ \[........\left( 1 \right)\]
Case 2: When train crosses the platform,
Speed of the train $ = \dfrac{{distance\,(platform\,\,length)}}{{time}}$
Since, the distance is length of the train and length of the platform (because train will pass the platform with its length),
Speed of train $ = $\[\dfrac{{length{\text{ }}of{\text{ }}train{\text{ }} + {\text{ length of }}platform}}{{Time}}\]
$ \Rightarrow s = \dfrac{{x + 50}}{{10}}m/s$ \[.......\left( 2 \right)\]
From \[\left( 1 \right){\text{ }}and{\text{ }}\left( 2 \right),\]we will get
$\dfrac{x}{5} = \dfrac{{x + 50}}{{10}}$
$ \Rightarrow \dfrac{x}{1} = \dfrac{{x + 50}}{2}$
By cross multiplying the terms in the above expression, we will get
\[2x = x + 50\]
\[ \Rightarrow 2x - {\text{x}} = 50\]
$ \Rightarrow x = 50$
$ \Rightarrow $Length of train\[ = 50\]meters.
Additional Information: We can convert units of speed in the following ways:
$\left( i \right){\text{ }}x{\text{ }}km/hr = \left( {x \times \dfrac{5}{{18}}} \right)m/s.$
$\left( {ii} \right)\;x{\text{ }}m/s = \left( {x \times \dfrac{{18}}{5}} \right)km/hr.$
Note: Time taken by a train of length (\[{\text{l}}\]meters) to pass object of length (\[{\text{b}}\]meters) is the time taken by train to cover \[\left( {l + b} \right)\] meters.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

