
A torch bulb is rated $ 5{\text{V}} $ and $ 500{\text{mA}} $ . Calculate (i) its power (ii) its resistance, and (iii) the energy consumed if this bulb is lighted for four hours.
Answer
442.4k+ views
Hint : To solve this question, we need to use the formula for the power dissipation across a resistor. The value of resistance can be found out by using the Ohm’s law. And the energy can be found out from the value of the power.
Formula used: The formulae used to solve this question are given by
$ P = VI $ , here $ P $ is the power dissipation across a resistance when a voltage $ V $ is applied and a current of $ I $ flows through it.
$ V = IR $ , here $ V $ is the voltage across a resistance $ R $ and $ I $ is the current flowing through it.
$ E = Pt $ , here $ E $ is the energy consumed due to a constant power $ P $ in time $ t $ .
Complete step by step answer
Let the resistance of the bulb be $ R $ .
The rating of the bulb is $ 5{\text{V}} $ and $ 500{\text{mA}} $ . This means that the bulb works when a voltage of $ 5{\text{V}} $ is applied across it and $ 500{\text{mA}} $ of current flows through it.
(i) The power dissipated across a resistance is given by
$ P = VI $
Substituting $ V = 5{\text{V}} $ , and $ I = 500{\text{mA}} $ we get
$ P = 5 \times 500{\text{mW}} $
$ \Rightarrow P = 2500{\text{mW}} = 2.5{\text{W}} $ …………………….(1)
Hence, the power dissipated across the torch bulb is equal to $ 2.5{\text{W}} $ .
(ii) From Ohm’s law we know that
$ V = IR $
So the resistance is given by
$ R = \dfrac{V}{I} $
Substituting $ V = 5{\text{V}} $ , and $ I = 500{\text{mA}} = 0.5{\text{A}} $ we get
$ R = \dfrac{5}{{0.5}} $
$ \Rightarrow R = 10\Omega $
Hence, the resistance of the bulb is equal to $ 10\Omega $ .
(iii) We know that the energy is related to the power by
$ E = Pt $ …………………….(2)
According to the question, the time is $ t = 4h $
We know that $ 1h = 60 \times 60s = 3600s $
So the time is
$ t = 4 \times 3600s $
$ \Rightarrow t = 14400s $ …………………….(3)
Substituting (1) and (3) in (2) we get
$ E = 2.5 \times 14400 $
$ \Rightarrow E = 36000{\text{J}} = 36{\text{kJ}} $
Hence, the energy consumed by the bulb is equal to $ {\text{36kJ}} $ .
Note
We should not forget to convert the values of the quantities given into their respective SI units. For example, the current is given in milliamperes, also the time is given in hours. So these are supposed to be converted into SI units.
Formula used: The formulae used to solve this question are given by
$ P = VI $ , here $ P $ is the power dissipation across a resistance when a voltage $ V $ is applied and a current of $ I $ flows through it.
$ V = IR $ , here $ V $ is the voltage across a resistance $ R $ and $ I $ is the current flowing through it.
$ E = Pt $ , here $ E $ is the energy consumed due to a constant power $ P $ in time $ t $ .
Complete step by step answer
Let the resistance of the bulb be $ R $ .
The rating of the bulb is $ 5{\text{V}} $ and $ 500{\text{mA}} $ . This means that the bulb works when a voltage of $ 5{\text{V}} $ is applied across it and $ 500{\text{mA}} $ of current flows through it.
(i) The power dissipated across a resistance is given by
$ P = VI $
Substituting $ V = 5{\text{V}} $ , and $ I = 500{\text{mA}} $ we get
$ P = 5 \times 500{\text{mW}} $
$ \Rightarrow P = 2500{\text{mW}} = 2.5{\text{W}} $ …………………….(1)
Hence, the power dissipated across the torch bulb is equal to $ 2.5{\text{W}} $ .
(ii) From Ohm’s law we know that
$ V = IR $
So the resistance is given by
$ R = \dfrac{V}{I} $
Substituting $ V = 5{\text{V}} $ , and $ I = 500{\text{mA}} = 0.5{\text{A}} $ we get
$ R = \dfrac{5}{{0.5}} $
$ \Rightarrow R = 10\Omega $
Hence, the resistance of the bulb is equal to $ 10\Omega $ .
(iii) We know that the energy is related to the power by
$ E = Pt $ …………………….(2)
According to the question, the time is $ t = 4h $
We know that $ 1h = 60 \times 60s = 3600s $
So the time is
$ t = 4 \times 3600s $
$ \Rightarrow t = 14400s $ …………………….(3)
Substituting (1) and (3) in (2) we get
$ E = 2.5 \times 14400 $
$ \Rightarrow E = 36000{\text{J}} = 36{\text{kJ}} $
Hence, the energy consumed by the bulb is equal to $ {\text{36kJ}} $ .
Note
We should not forget to convert the values of the quantities given into their respective SI units. For example, the current is given in milliamperes, also the time is given in hours. So these are supposed to be converted into SI units.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
