
A thermally insulated vessel contains an ideal gas of molecular mass M and ratio of specific heats \[\Upsilon \] . it is moving with speed V and is suddenly brought to rest. Assuming no heat is lost to the surroundings, its temperature increases by:
A.$\dfrac{\left( \Upsilon -1 \right)}{2\left( \Upsilon +2 \right)\text{R}}\text{ M}{{\text{V}}^{2}}$
B.$\dfrac{\left( \Upsilon -1 \right)}{2\Upsilon \text{r}}\text{ M}{{\text{V}}^{2}}$
C.$\dfrac{\Upsilon \text{ M}{{\text{V}}^{2}}}{2\text{ R}}$
D.$\dfrac{\left( \Upsilon -1 \right)}{2\text{ R}}\text{M}{{\text{V}}^{2}}$
Answer
553.2k+ views
Hint: The work done during the thermodynamic process is equal to change in internal energy of the gas. By substituting the formulas for W and$\vartriangle \text{V}$ in the equation W =$\vartriangle \text{V}$, the value of$\vartriangle \text{T}$ can be found.
Complete answer:
We know that work during thermodynamic process is equal to change in internal energy of the gas, that is
W and$\vartriangle \text{V}$….. (1)
Here $\text{W}=\dfrac{1}{2}\text{M}{{\text{V}}^{2}}$ …. (2)
Now, change in internal energy$\vartriangle \text{U}$ in terms of R and constant \[\Upsilon \] by the formula
\[\vartriangle \text{U}=\dfrac{\text{R}}{\left( \Upsilon -1 \right)}\text{ }\vartriangle \text{T}\] …. (3)
Putting values of equation (2) and (3) in equation (1), we get
$\dfrac{1}{2}\text{M}{{\text{V}}^{2}}=\dfrac{\text{R}}{\left( \Upsilon -1 \right)}\text{ }\vartriangle \text{T}$
Or $\vartriangle \text{T}=\dfrac{\left( \Upsilon -1 \right)}{\text{2R}}\text{M}{{\text{V}}^{2}}$
So, the correct option is (D).
Note:
We know that PV = nRT
Also, for1 mole of gas,
$\text{U}={{\text{N}}_{0}}\text{f}\left( \dfrac{1}{2}\text{ KT} \right)$ .. .. (A)
Where ${{\text{N}}_{0}}$= Avogadro’s number
K = Boltzmann’s constant
T = Temperature
f = degree of freedom
The relation between $\Upsilon =\dfrac{\left( \text{f}+2 \right)}{\text{f}}$
So,
$\begin{align}
& \Upsilon -1=1+\dfrac{2}{\text{f}}-1 \\
& \Upsilon -1=\dfrac{2}{\text{f}} \\
\end{align}$
Or $\text{f}=\dfrac{2}{\left( \Upsilon -1 \right)}$
Putting this value in equation (A), we get
$\begin{align}
& \text{U}={{\text{N}}_{0}}\left( \dfrac{2}{\Upsilon } \right)\left( \dfrac{1}{2}\text{ KT} \right) \\
& \text{U}=\dfrac{{{\text{N}}_{0}}\text{KT}}{\Upsilon -1} \\
& \text{ }=\dfrac{{{\text{N}}_{0}}\text{T}}{\left( \Upsilon -1 \right)}\left( \dfrac{\text{R}}{{{\text{N}}_{0}}} \right) \\
& \text{U}=\dfrac{\text{RT}}{\left( \Upsilon -1 \right)} \\
\end{align}$
Or
$\vartriangle \text{V}=\dfrac{\text{R}}{\left( \Upsilon -1 \right)}\vartriangle \text{T}$
This is the derivation of internal energy in terms of R,$\Upsilon $and T.
Complete answer:
We know that work during thermodynamic process is equal to change in internal energy of the gas, that is
W and$\vartriangle \text{V}$….. (1)
Here $\text{W}=\dfrac{1}{2}\text{M}{{\text{V}}^{2}}$ …. (2)
Now, change in internal energy$\vartriangle \text{U}$ in terms of R and constant \[\Upsilon \] by the formula
\[\vartriangle \text{U}=\dfrac{\text{R}}{\left( \Upsilon -1 \right)}\text{ }\vartriangle \text{T}\] …. (3)
Putting values of equation (2) and (3) in equation (1), we get
$\dfrac{1}{2}\text{M}{{\text{V}}^{2}}=\dfrac{\text{R}}{\left( \Upsilon -1 \right)}\text{ }\vartriangle \text{T}$
Or $\vartriangle \text{T}=\dfrac{\left( \Upsilon -1 \right)}{\text{2R}}\text{M}{{\text{V}}^{2}}$
So, the correct option is (D).
Note:
We know that PV = nRT
Also, for1 mole of gas,
$\text{U}={{\text{N}}_{0}}\text{f}\left( \dfrac{1}{2}\text{ KT} \right)$ .. .. (A)
Where ${{\text{N}}_{0}}$= Avogadro’s number
K = Boltzmann’s constant
T = Temperature
f = degree of freedom
The relation between $\Upsilon =\dfrac{\left( \text{f}+2 \right)}{\text{f}}$
So,
$\begin{align}
& \Upsilon -1=1+\dfrac{2}{\text{f}}-1 \\
& \Upsilon -1=\dfrac{2}{\text{f}} \\
\end{align}$
Or $\text{f}=\dfrac{2}{\left( \Upsilon -1 \right)}$
Putting this value in equation (A), we get
$\begin{align}
& \text{U}={{\text{N}}_{0}}\left( \dfrac{2}{\Upsilon } \right)\left( \dfrac{1}{2}\text{ KT} \right) \\
& \text{U}=\dfrac{{{\text{N}}_{0}}\text{KT}}{\Upsilon -1} \\
& \text{ }=\dfrac{{{\text{N}}_{0}}\text{T}}{\left( \Upsilon -1 \right)}\left( \dfrac{\text{R}}{{{\text{N}}_{0}}} \right) \\
& \text{U}=\dfrac{\text{RT}}{\left( \Upsilon -1 \right)} \\
\end{align}$
Or
$\vartriangle \text{V}=\dfrac{\text{R}}{\left( \Upsilon -1 \right)}\vartriangle \text{T}$
This is the derivation of internal energy in terms of R,$\Upsilon $and T.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

