
What is a Taylor’s expansion of \[{{e}^{-2x}}\] centered at \[x=0\]?
Answer
512.7k+ views
Hint: This type of question depends on the concept of Taylor’s series expansion of a function at a particular point. We know that the Taylor’s series expands any function till an infinite sum of terms which are expressed in terms of the derivatives of the function at a point. We know that the Taylor’s series expansion of a function centered at \[x=0\] is known as Maclaurin’s series. The general formula for Maclaurin’s series is \[f\left( x \right)=\sum\limits_{n=0}^{\infty }{{{f}^{n}}\left( 0 \right)\dfrac{{{x}^{n}}}{n!}}\]
Complete step by step solution:
Now, we have to find Taylor’s series expansion of \[{{e}^{-2x}}\] centered at \[x=0\].
We know that Taylor’s series expansion at \[x=0\] is known as Maclaurin’s series which is given by,
\[\Rightarrow f\left( x \right)=\sum\limits_{n=0}^{\infty }{{{f}^{n}}\left( 0 \right)\dfrac{{{x}^{n}}}{n!}}\]
Which we can also write as
\[\Rightarrow f\left( x \right)=f\left( 0 \right)+f'\left( 0 \right)x+f''\left( 0 \right)\dfrac{{{x}^{2}}}{2!}+f'''\left( 0 \right)\dfrac{{{x}^{3}}}{3!}+.........+{{f}^{n}}\left( 0 \right)\dfrac{{{x}^{n}}}{n!}+.......\text{ e}{{\text{q}}^{\text{n}}}\left( 1 \right)\]
Let us consider,
\[\Rightarrow f\left( x \right)={{e}^{-2x}}\]
On taking derivatives, we get,
\[\begin{align}
& \Rightarrow f'\left( x \right)=-2{{e}^{-2x}} \\
& \Rightarrow f''\left( x \right)=4{{e}^{-2x}} \\
& \Rightarrow f'''\left( x \right)=-8{{e}^{-2x}} \\
\end{align}\]
Continuing in this way we get \[{{n}^{th}}\] order derivative,
\[\Rightarrow {{f}^{n}}\left( x \right)={{\left( -2 \right)}^{n}}{{e}^{-2x}}\]
Now, by substituting \[x=0\] we can write
\[\begin{align}
& \Rightarrow f\left( 0 \right)=1 \\
& \Rightarrow f'\left( 0 \right)=-2 \\
& \Rightarrow f''\left( 0 \right)=4 \\
& \Rightarrow f'''\left( 0 \right)=-8 \\
& \Rightarrow {{f}^{n}}\left( 0 \right)={{\left( -2 \right)}^{n}} \\
\end{align}\]
Thus \[\text{e}{{\text{q}}^{\text{n}}}\left( 1 \right)\] becomes,
\[\begin{align}
& \Rightarrow {{e}^{-2x}}=1+\left( -2 \right)x+4\dfrac{{{x}^{2}}}{2!}+\left( -8 \right)\dfrac{{{x}^{3}}}{3!}+.........+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+....... \\
& \Rightarrow {{e}^{-2x}}=1-2x+2{{x}^{2}}-\dfrac{4}{3}{{x}^{3}}+............+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+...... \\
\end{align}\]
Hence the Taylor’s series expansion of \[{{e}^{-2x}}\] centered at \[x=0\] is given by, \[{{e}^{-2x}}=1-2x+2{{x}^{2}}-\dfrac{4}{3}{{x}^{3}}+............+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+......\]
Note: This type of question can also be solved in another way. One of the students may solve this as first finding the Maclaurin’s series for the function \[f\left( x \right)={{e}^{x}}\] and then to obtain series expansion of \[f\left( x \right)={{e}^{-2x}}\] only replace each of \[x\] by \[-2x\]. Hence, if we consider \[f\left( x \right)={{e}^{x}}\] then
\[\begin{align}
& \Rightarrow f'\left( x \right)={{e}^{x}} \\
& \Rightarrow f''\left( x \right)={{e}^{x}} \\
& \Rightarrow f'''\left( x \right)={{e}^{x}} \\
\end{align}\]
In fact the \[{{n}^{th}}\] order derivative of \[{{e}^{x}}\] is \[{{e}^{x}}\]itself.
\[\Rightarrow {{f}^{n}}\left( x \right)={{e}^{x}}\]
Now, by substituting \[x=0\] we can write
\[\begin{align}
& \Rightarrow f'\left( 0 \right)=1 \\
& \Rightarrow f''\left( 0 \right)=1 \\
& \Rightarrow f'''\left( 0 \right)=1 \\
& \Rightarrow {{f}^{n}}\left( 0 \right)=1 \\
\end{align}\]
Hence, the Maclaurin’s series for \[f\left( x \right)={{e}^{x}}\] is given by,
\[\Rightarrow {{e}^{x}}=1+x+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+.........+\dfrac{{{x}^{n}}}{n!}+.......\]
Now we will replace each of x’s by (-2x) to obtain Maclaurin’s series for \[f\left( x \right)={{e}^{x}}\].
\[\begin{align}
& \Rightarrow {{e}^{-2x}}=1+\left( -2x \right)+\left( \dfrac{{{\left( -2x \right)}^{2}}}{2!} \right)+\left( \dfrac{{{\left( -2x \right)}^{3}}}{3!} \right)+.........+\left( \dfrac{{{\left( -2x \right)}^{3}}}{n!} \right)+..... \\
& \Rightarrow {{e}^{-2x}}=1+\left( -2 \right)x+4\dfrac{{{x}^{2}}}{2!}+\left( -8 \right)\dfrac{{{x}^{3}}}{3!}+.........+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+....... \\
& \Rightarrow {{e}^{-2x}}=1-2x+2{{x}^{2}}-\dfrac{4}{3}{{x}^{3}}+............+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+...... \\
\end{align}\]
Hence the Taylor’s series expansion of \[{{e}^{-2x}}\] centered at \[x=0\] is given by, \[{{e}^{-2x}}=1-2x+2{{x}^{2}}-\dfrac{4}{3}{{x}^{3}}+............+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+......\]
Complete step by step solution:
Now, we have to find Taylor’s series expansion of \[{{e}^{-2x}}\] centered at \[x=0\].
We know that Taylor’s series expansion at \[x=0\] is known as Maclaurin’s series which is given by,
\[\Rightarrow f\left( x \right)=\sum\limits_{n=0}^{\infty }{{{f}^{n}}\left( 0 \right)\dfrac{{{x}^{n}}}{n!}}\]
Which we can also write as
\[\Rightarrow f\left( x \right)=f\left( 0 \right)+f'\left( 0 \right)x+f''\left( 0 \right)\dfrac{{{x}^{2}}}{2!}+f'''\left( 0 \right)\dfrac{{{x}^{3}}}{3!}+.........+{{f}^{n}}\left( 0 \right)\dfrac{{{x}^{n}}}{n!}+.......\text{ e}{{\text{q}}^{\text{n}}}\left( 1 \right)\]
Let us consider,
\[\Rightarrow f\left( x \right)={{e}^{-2x}}\]
On taking derivatives, we get,
\[\begin{align}
& \Rightarrow f'\left( x \right)=-2{{e}^{-2x}} \\
& \Rightarrow f''\left( x \right)=4{{e}^{-2x}} \\
& \Rightarrow f'''\left( x \right)=-8{{e}^{-2x}} \\
\end{align}\]
Continuing in this way we get \[{{n}^{th}}\] order derivative,
\[\Rightarrow {{f}^{n}}\left( x \right)={{\left( -2 \right)}^{n}}{{e}^{-2x}}\]
Now, by substituting \[x=0\] we can write
\[\begin{align}
& \Rightarrow f\left( 0 \right)=1 \\
& \Rightarrow f'\left( 0 \right)=-2 \\
& \Rightarrow f''\left( 0 \right)=4 \\
& \Rightarrow f'''\left( 0 \right)=-8 \\
& \Rightarrow {{f}^{n}}\left( 0 \right)={{\left( -2 \right)}^{n}} \\
\end{align}\]
Thus \[\text{e}{{\text{q}}^{\text{n}}}\left( 1 \right)\] becomes,
\[\begin{align}
& \Rightarrow {{e}^{-2x}}=1+\left( -2 \right)x+4\dfrac{{{x}^{2}}}{2!}+\left( -8 \right)\dfrac{{{x}^{3}}}{3!}+.........+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+....... \\
& \Rightarrow {{e}^{-2x}}=1-2x+2{{x}^{2}}-\dfrac{4}{3}{{x}^{3}}+............+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+...... \\
\end{align}\]
Hence the Taylor’s series expansion of \[{{e}^{-2x}}\] centered at \[x=0\] is given by, \[{{e}^{-2x}}=1-2x+2{{x}^{2}}-\dfrac{4}{3}{{x}^{3}}+............+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+......\]
Note: This type of question can also be solved in another way. One of the students may solve this as first finding the Maclaurin’s series for the function \[f\left( x \right)={{e}^{x}}\] and then to obtain series expansion of \[f\left( x \right)={{e}^{-2x}}\] only replace each of \[x\] by \[-2x\]. Hence, if we consider \[f\left( x \right)={{e}^{x}}\] then
\[\begin{align}
& \Rightarrow f'\left( x \right)={{e}^{x}} \\
& \Rightarrow f''\left( x \right)={{e}^{x}} \\
& \Rightarrow f'''\left( x \right)={{e}^{x}} \\
\end{align}\]
In fact the \[{{n}^{th}}\] order derivative of \[{{e}^{x}}\] is \[{{e}^{x}}\]itself.
\[\Rightarrow {{f}^{n}}\left( x \right)={{e}^{x}}\]
Now, by substituting \[x=0\] we can write
\[\begin{align}
& \Rightarrow f'\left( 0 \right)=1 \\
& \Rightarrow f''\left( 0 \right)=1 \\
& \Rightarrow f'''\left( 0 \right)=1 \\
& \Rightarrow {{f}^{n}}\left( 0 \right)=1 \\
\end{align}\]
Hence, the Maclaurin’s series for \[f\left( x \right)={{e}^{x}}\] is given by,
\[\Rightarrow {{e}^{x}}=1+x+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+.........+\dfrac{{{x}^{n}}}{n!}+.......\]
Now we will replace each of x’s by (-2x) to obtain Maclaurin’s series for \[f\left( x \right)={{e}^{x}}\].
\[\begin{align}
& \Rightarrow {{e}^{-2x}}=1+\left( -2x \right)+\left( \dfrac{{{\left( -2x \right)}^{2}}}{2!} \right)+\left( \dfrac{{{\left( -2x \right)}^{3}}}{3!} \right)+.........+\left( \dfrac{{{\left( -2x \right)}^{3}}}{n!} \right)+..... \\
& \Rightarrow {{e}^{-2x}}=1+\left( -2 \right)x+4\dfrac{{{x}^{2}}}{2!}+\left( -8 \right)\dfrac{{{x}^{3}}}{3!}+.........+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+....... \\
& \Rightarrow {{e}^{-2x}}=1-2x+2{{x}^{2}}-\dfrac{4}{3}{{x}^{3}}+............+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+...... \\
\end{align}\]
Hence the Taylor’s series expansion of \[{{e}^{-2x}}\] centered at \[x=0\] is given by, \[{{e}^{-2x}}=1-2x+2{{x}^{2}}-\dfrac{4}{3}{{x}^{3}}+............+{{\left( -2 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}+......\]
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

