
A tangent to the parabola ${{x}^{2}}+4ay=0$ cuts the parabola ${{x}^{2}}=4by$ at two points A, B. Find the locus of the midpoint of AB.
[a] $\left( a+2b \right){{x}^{2}}=4{{b}^{2}}y$
[b] $\left( b+2a \right){{x}^{2}}=4{{b}^{2}}y$
[c] $\left( a+2b \right){{y}^{2}}=4{{b}^{2}}x$
[d] $\left( b+2x \right){{x}^{2}}=4{{a}^{2}}y$
Answer
595.8k+ views
- Hint: Use the property that the tangent of the slope of m to the parabola ${{x}^{2}}=-4ay$ is given by $y=mx+a{{m}^{2}}$. Hence find the coordinates of the point of intersection of this line with the parabola and hence find the locus of midpoint of AB.
Complete step-by-step solution -
Let the slope of the tangent at P be m.
We know that the tangent of the slope of m to the parabola ${{x}^{2}}=-4ay$ is given by $y=mx+a{{m}^{2}}$.
Hence the equation of PB is $y=mx+a{{m}^{2}}$
Finding the points of intersection of P with the parabola ${{x}^{2}}=4by$:
Substituting the value of y from the equation of PB in the equation of the parabola ${{x}^{2}}=4by$, we get
${{x}^{2}}=4b\left( mx+a{{m}^{2}} \right)$
Hence we have ${{x}^{2}}-4bmx-4ab{{m}^{2}}=0\text{ (i)}$
Let $A\equiv \left( {{x}_{1}},{{y}_{1}} \right)$ and $B\equiv \left( {{x}_{2}},{{y}_{2}} \right)$, we have ${{x}_{1}},{{x}_{2}}$ are the roots of equation (i)
Hence we have ${{x}_{1}}+{{x}_{2}}=4bm$
Also $x_{1}^{2}+x_{2}^{2}={{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}-2{{x}_{1}}{{x}_{2}}=16{{b}^{2}}{{m}^{2}}+8ab{{m}^{2}}$
Let $D\equiv \left( h,k \right)$ be the midpoint of AB.
Hence we have $h=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}=\dfrac{4bm}{2}=2bm$ and $k=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$
Since $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)$ lie on ${{x}^{2}}=4by$, we have
$\begin{align}
& x_{1}^{2}=4b{{y}_{1}},x_{2}^{2}=4b{{y}_{2}} \\
& \Rightarrow {{y}_{1}}=\dfrac{x_{1}^{2}}{4b},{{y}_{2}}=\dfrac{x_{2}^{2}}{4b} \\
\end{align}$
Hence we have $k=\dfrac{x_{1}^{2}+x_{2}^{2}}{8b}=\dfrac{16{{b}^{2}}{{m}^{2}}+8ab{{m}^{2}}}{8b}=2b{{m}^{2}}+a{{m}^{2}}$
Since $h=2bm$, we have $m=\dfrac{h}{2b}$
Hence we have
$\begin{align}
& k=2b{{\left( \dfrac{h}{2b} \right)}^{2}}+a{{\left( \dfrac{h}{2b} \right)}^{2}} \\
& \Rightarrow \left( a+2b \right){{h}^{2}}=4{{b}^{2}}k \\
\end{align}$
Replacing h by x and k by y, we get locus of the midpoint of AB is
$\left( a+2b \right){{x}^{2}}=4{{b}^{2}}y$
Hence option [a] is correct.
Note: Alternatively, you can use the parametric form of the parabola to find A, B.
Let $P\equiv \left( 2at,-a{{t}^{2}} \right)$
We know that the equation of the tangent at $P\left( {{x}_{1}},{{y}_{1}} \right)$ to the parabola ${{x}^{2}}=-4ay$ is given by $x{{x}_{1}}=-2a\left( y+{{y}_{1}} \right)$
Hence we have the equation of the tangent at P is
$\begin{align}
& x\left( 2at \right)=-2a\left( y-a{{t}^{2}} \right) \\
& \Rightarrow y=a{{t}^{2}}-tx \\
\end{align}$
Substituting the value of y in ${{x}^{2}}=4by$, we get
$\begin{align}
& {{x}^{2}}=4b\left( a{{t}^{2}}-xt \right) \\
& \Rightarrow {{x}^{2}}+4bxt-4ab{{t}^{2}}=0 \\
\end{align}$
Hence we have ${{x}_{1}}+{{x}_{2}}=-4bt$ and $x_{1}^{2}+x_{2}^{2}=16{{b}^{2}}{{t}^{2}}+8ab{{t}^{2}}$
Hence, we have $h=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}=-2bt$ and $k=\dfrac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{8b}=2b{{t}^{2}}+a{{t}^{2}}$
Hence we have
$\begin{align}
& k=2b{{\left( \dfrac{-h}{2b} \right)}^{2}}+a{{\left( \dfrac{-h}{2b} \right)}^{2}} \\
& \Rightarrow \left( a+2b \right){{h}^{2}}=4{{b}^{2}}k \\
\end{align}$
Replacing h by x and k by y, we get
$\left( a+2b \right){{x}^{2}}=4{{b}^{2}}y$, which is the same equation as obtained above.
Hence option [a] is correct.
Complete step-by-step solution -
Let the slope of the tangent at P be m.
We know that the tangent of the slope of m to the parabola ${{x}^{2}}=-4ay$ is given by $y=mx+a{{m}^{2}}$.
Hence the equation of PB is $y=mx+a{{m}^{2}}$
Finding the points of intersection of P with the parabola ${{x}^{2}}=4by$:
Substituting the value of y from the equation of PB in the equation of the parabola ${{x}^{2}}=4by$, we get
${{x}^{2}}=4b\left( mx+a{{m}^{2}} \right)$
Hence we have ${{x}^{2}}-4bmx-4ab{{m}^{2}}=0\text{ (i)}$
Let $A\equiv \left( {{x}_{1}},{{y}_{1}} \right)$ and $B\equiv \left( {{x}_{2}},{{y}_{2}} \right)$, we have ${{x}_{1}},{{x}_{2}}$ are the roots of equation (i)
Hence we have ${{x}_{1}}+{{x}_{2}}=4bm$
Also $x_{1}^{2}+x_{2}^{2}={{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}-2{{x}_{1}}{{x}_{2}}=16{{b}^{2}}{{m}^{2}}+8ab{{m}^{2}}$
Let $D\equiv \left( h,k \right)$ be the midpoint of AB.
Hence we have $h=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}=\dfrac{4bm}{2}=2bm$ and $k=\dfrac{{{y}_{1}}+{{y}_{2}}}{2}$
Since $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)$ lie on ${{x}^{2}}=4by$, we have
$\begin{align}
& x_{1}^{2}=4b{{y}_{1}},x_{2}^{2}=4b{{y}_{2}} \\
& \Rightarrow {{y}_{1}}=\dfrac{x_{1}^{2}}{4b},{{y}_{2}}=\dfrac{x_{2}^{2}}{4b} \\
\end{align}$
Hence we have $k=\dfrac{x_{1}^{2}+x_{2}^{2}}{8b}=\dfrac{16{{b}^{2}}{{m}^{2}}+8ab{{m}^{2}}}{8b}=2b{{m}^{2}}+a{{m}^{2}}$
Since $h=2bm$, we have $m=\dfrac{h}{2b}$
Hence we have
$\begin{align}
& k=2b{{\left( \dfrac{h}{2b} \right)}^{2}}+a{{\left( \dfrac{h}{2b} \right)}^{2}} \\
& \Rightarrow \left( a+2b \right){{h}^{2}}=4{{b}^{2}}k \\
\end{align}$
Replacing h by x and k by y, we get locus of the midpoint of AB is
$\left( a+2b \right){{x}^{2}}=4{{b}^{2}}y$
Hence option [a] is correct.
Note: Alternatively, you can use the parametric form of the parabola to find A, B.
Let $P\equiv \left( 2at,-a{{t}^{2}} \right)$
We know that the equation of the tangent at $P\left( {{x}_{1}},{{y}_{1}} \right)$ to the parabola ${{x}^{2}}=-4ay$ is given by $x{{x}_{1}}=-2a\left( y+{{y}_{1}} \right)$
Hence we have the equation of the tangent at P is
$\begin{align}
& x\left( 2at \right)=-2a\left( y-a{{t}^{2}} \right) \\
& \Rightarrow y=a{{t}^{2}}-tx \\
\end{align}$
Substituting the value of y in ${{x}^{2}}=4by$, we get
$\begin{align}
& {{x}^{2}}=4b\left( a{{t}^{2}}-xt \right) \\
& \Rightarrow {{x}^{2}}+4bxt-4ab{{t}^{2}}=0 \\
\end{align}$
Hence we have ${{x}_{1}}+{{x}_{2}}=-4bt$ and $x_{1}^{2}+x_{2}^{2}=16{{b}^{2}}{{t}^{2}}+8ab{{t}^{2}}$
Hence, we have $h=\dfrac{{{x}_{1}}+{{x}_{2}}}{2}=-2bt$ and $k=\dfrac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{8b}=2b{{t}^{2}}+a{{t}^{2}}$
Hence we have
$\begin{align}
& k=2b{{\left( \dfrac{-h}{2b} \right)}^{2}}+a{{\left( \dfrac{-h}{2b} \right)}^{2}} \\
& \Rightarrow \left( a+2b \right){{h}^{2}}=4{{b}^{2}}k \\
\end{align}$
Replacing h by x and k by y, we get
$\left( a+2b \right){{x}^{2}}=4{{b}^{2}}y$, which is the same equation as obtained above.
Hence option [a] is correct.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

