
A sum of money amounts to $Rs.66836.70$ in $2$ years at $3\%$ p.a. compound interest. The sum is,
Answer
505.2k+ views
Hint: This is a problem based on compound interest. We are given the rate of interest, time period and the amount that is interest and principal together. We have to find the principal sum. That is the amount that was invested in this compound interest. So we will use the formula of compound interest and amount calculation to solve this problem.
Formula used:
\[A = p{\left[ {1 + \dfrac{R}{{100}}} \right]^t}\]
Where,
$A$ is the amount
$P$ is the principal sum
$R$ is the rate of interest per annum
$t$ is the time period in years
Complete step by step solution:
Given that, a sum of money amounts to Rs.66836.70 in 2 years at 3% p.a.
That is the amount after adding the interest is given . we have to find the principal. So we will use the formula above.
\[A = p{\left[ {1 + \dfrac{R}{{100}}} \right]^t}\]
Now substitute the given data,
\[66836.70 = p{\left[ {1 + \dfrac{3}{{100}}} \right]^2}\]
Now taking the LCM in the bracket,
\[66836.70 = p{\left[ {\dfrac{{103}}{{100}}} \right]^2}\]
\[\Rightarrow 66836.70 = p\left[ {\dfrac{{{{103}^2}}}{{{{100}^2}}}} \right]\]
On cross multiplying we get,
\[p = \dfrac{{66836.70 \times {{100}^2}}}{{{{103}^2}}}\]
Taking the squares,
\[p = \dfrac{{66836.70 \times {{100}^2}}}{{10609}}\]
On dividing by 10609 we get and also taking the square of 100,
\[p = 6.3 \times 10000\]
On multiplying the decimal will be removed,
\[p = 63000\]
This is the principal sum invested Rs.63000.
Note:
Note that they have given all the required data simply using the formula is enough. But the time period should be in years if it is not then do make it because the rate is per cent per annum.
If asked for the interest then we will subtract the principal from the amount sum.
Formula used:
\[A = p{\left[ {1 + \dfrac{R}{{100}}} \right]^t}\]
Where,
$A$ is the amount
$P$ is the principal sum
$R$ is the rate of interest per annum
$t$ is the time period in years
Complete step by step solution:
Given that, a sum of money amounts to Rs.66836.70 in 2 years at 3% p.a.
That is the amount after adding the interest is given . we have to find the principal. So we will use the formula above.
\[A = p{\left[ {1 + \dfrac{R}{{100}}} \right]^t}\]
Now substitute the given data,
\[66836.70 = p{\left[ {1 + \dfrac{3}{{100}}} \right]^2}\]
Now taking the LCM in the bracket,
\[66836.70 = p{\left[ {\dfrac{{103}}{{100}}} \right]^2}\]
\[\Rightarrow 66836.70 = p\left[ {\dfrac{{{{103}^2}}}{{{{100}^2}}}} \right]\]
On cross multiplying we get,
\[p = \dfrac{{66836.70 \times {{100}^2}}}{{{{103}^2}}}\]
Taking the squares,
\[p = \dfrac{{66836.70 \times {{100}^2}}}{{10609}}\]
On dividing by 10609 we get and also taking the square of 100,
\[p = 6.3 \times 10000\]
On multiplying the decimal will be removed,
\[p = 63000\]
This is the principal sum invested Rs.63000.
Note:
Note that they have given all the required data simply using the formula is enough. But the time period should be in years if it is not then do make it because the rate is per cent per annum.
If asked for the interest then we will subtract the principal from the amount sum.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


