
(a) State the universal law of gravitation. Name the scientist who gave this law.
(b) Define gravitational constant. What are the units of gravitational constant.
Answer
570.3k+ views
Hint: From the concept of law of gravitation, we know that two bodies present in this universe attract them with a force of attraction. We will write the expression for the gravitational constant to define it and to find out its unit.
Complete step by step answer:
(a) Using the concept of gravitational force, we can write:
\[F \propto \dfrac{{{m_1}{m_2}}}{{{r^2}}}\]
Here \[{m_1}\] is the mass of the first body, \[{m_2}\] is the mass of the second body and r is the distance between the centres of these two masses.
This law is given by Isaac Newton and also known as Newton gravitational law.
(b) We can remove the sign of proportionality by introducing a constant.
\[F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}\]
Here G is introduced due to proportionality sign and called a gravitational constant.
We can rewrite the above equation in such a way that the value of gravitational constant G can be evaluated.
\[G = \dfrac{{F{r^2}}}{{{m_1}{m_2}}}\]
The gravitational constant is equal to the value of force present between two particles having a unit value of mass and unit distance by which they are kept apart.
We know that the unit of force, mass and radius is Newton, kilogram and metre. Therefore, we can write the unit of gravitational constant G as below:
Unit of \[
G = \dfrac{{{\rm{N}} \cdot {{\rm{m}}^2}}}{{{\rm{kg}} \cdot {\rm{kg}}}}\\
\therefore G = {\rm{N}}{{\rm{m}}^2}{\rm{k}}{{\rm{g}}^2}
\]
Note: We can further resolve the unit Newton into its base units (kg, m, s) which is equal to kilogram-metre per second square \[\left( {{\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}} \right)\]. The magnitude of the force between a pair of an object is dependent on the distance by which they are kept apart; that is if the distance is more than the magnitude of force will be less and vice-versa.
Complete step by step answer:
(a) Using the concept of gravitational force, we can write:
\[F \propto \dfrac{{{m_1}{m_2}}}{{{r^2}}}\]
Here \[{m_1}\] is the mass of the first body, \[{m_2}\] is the mass of the second body and r is the distance between the centres of these two masses.
This law is given by Isaac Newton and also known as Newton gravitational law.
(b) We can remove the sign of proportionality by introducing a constant.
\[F = G\dfrac{{{m_1}{m_2}}}{{{r^2}}}\]
Here G is introduced due to proportionality sign and called a gravitational constant.
We can rewrite the above equation in such a way that the value of gravitational constant G can be evaluated.
\[G = \dfrac{{F{r^2}}}{{{m_1}{m_2}}}\]
The gravitational constant is equal to the value of force present between two particles having a unit value of mass and unit distance by which they are kept apart.
We know that the unit of force, mass and radius is Newton, kilogram and metre. Therefore, we can write the unit of gravitational constant G as below:
Unit of \[
G = \dfrac{{{\rm{N}} \cdot {{\rm{m}}^2}}}{{{\rm{kg}} \cdot {\rm{kg}}}}\\
\therefore G = {\rm{N}}{{\rm{m}}^2}{\rm{k}}{{\rm{g}}^2}
\]
Note: We can further resolve the unit Newton into its base units (kg, m, s) which is equal to kilogram-metre per second square \[\left( {{\rm{kg}}{{\rm{m}} {\left/
{\vphantom {{\rm{m}} {{{\rm{s}}^2}}}} \right.
} {{{\rm{s}}^2}}}} \right)\]. The magnitude of the force between a pair of an object is dependent on the distance by which they are kept apart; that is if the distance is more than the magnitude of force will be less and vice-versa.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

