
A spherical of radius R consists of a fluid of constant density and is in equilibrium under its own gravity. If P(r), is pressure at r (r < R), then the correct option(s) are:
A. P (r = 0) = 0
B. $\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}$
C. $\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}$
D. $\dfrac{P(r=R/2)}{P(r=R/3)}=\dfrac{20}{27}$
Answer
556.8k+ views
Hint: Let g be the acceleration at the direction of the element at distance r from the centre O due to gravity. The difference in pressure (dp) on the two sides of the part in equilibrium is pressure by gravity per unit area.
Complete step by step answer:
So, we have
\[-dp=\rho gdr\]
Now,
Let the mass of the spherical body with radius r be m
So, now
We have
\[m=\dfrac{4}{3}\pi {{r}^{2}}\rho \]
Also,
\[\Rightarrow g=\dfrac{Gm}{{{r}^{2}}}\]
\[\Rightarrow g=\dfrac{G}{{{r}^{2}}}\times \dfrac{4}{3}\pi {{r}^{3}}\rho \]
\[\Rightarrow g=\dfrac{4}{3}G\pi r\rho \]
By using the above values,
\[dp=-\rho (\dfrac{4}{3}\pi G\rho r)dr\]
Integrating both side from P(=R) to P(=r)
We have
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=\int\limits_{P(=R)}^{P(=r)}{\rho (-\dfrac{4}{3}G\pi \rho r)}dr\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=-\dfrac{4}{3}G\pi {{\rho }^{2}}\int\limits_{P(=R)}^{P(=r)}{r}dr\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=-\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{r}^{2}}}{2}]_{R}^{r}\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
\[\Rightarrow P(r)-P(R)=\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
For,
P(R) = 0, we have P(r) = \[\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
Now,
When r = 0, P(r) = \[\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}}{2}]\]
For, $P(r=3R/4)andP(r=2R/3)$
We have
$\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}$
Also, $P(r=3R/5)$ and $P(r=2R/5)$
We have
$\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}$
Now again
For,
\[P(r=R/2)\]and \[P(r=R/3)\]
$\dfrac{P(r=R/2)}{P(r=R/3)}=\dfrac{27}{32}$
Therefore, Option – B and Option – C are the correct relations, i.e.,
B. $\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}$
C. $\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}$
Note: In many instances, one may misunderstand the formula of buoyancy for the formula of pressure. Keep in mind that the formula for pressure uses height, whereas, the one for buoyancy uses volume.
Complete step by step answer:
So, we have
\[-dp=\rho gdr\]
Now,
Let the mass of the spherical body with radius r be m
So, now
We have
\[m=\dfrac{4}{3}\pi {{r}^{2}}\rho \]
Also,
\[\Rightarrow g=\dfrac{Gm}{{{r}^{2}}}\]
\[\Rightarrow g=\dfrac{G}{{{r}^{2}}}\times \dfrac{4}{3}\pi {{r}^{3}}\rho \]
\[\Rightarrow g=\dfrac{4}{3}G\pi r\rho \]
By using the above values,
\[dp=-\rho (\dfrac{4}{3}\pi G\rho r)dr\]
Integrating both side from P(=R) to P(=r)
We have
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=\int\limits_{P(=R)}^{P(=r)}{\rho (-\dfrac{4}{3}G\pi \rho r)}dr\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=-\dfrac{4}{3}G\pi {{\rho }^{2}}\int\limits_{P(=R)}^{P(=r)}{r}dr\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=-\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{r}^{2}}}{2}]_{R}^{r}\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
\[\Rightarrow P(r)-P(R)=\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
For,
P(R) = 0, we have P(r) = \[\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
Now,
When r = 0, P(r) = \[\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}}{2}]\]
For, $P(r=3R/4)andP(r=2R/3)$
We have
$\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}$
Also, $P(r=3R/5)$ and $P(r=2R/5)$
We have
$\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}$
Now again
For,
\[P(r=R/2)\]and \[P(r=R/3)\]
$\dfrac{P(r=R/2)}{P(r=R/3)}=\dfrac{27}{32}$
Therefore, Option – B and Option – C are the correct relations, i.e.,
B. $\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}$
C. $\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}$
Note: In many instances, one may misunderstand the formula of buoyancy for the formula of pressure. Keep in mind that the formula for pressure uses height, whereas, the one for buoyancy uses volume.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

