
A spherical of radius R consists of a fluid of constant density and is in equilibrium under its own gravity. If P(r), is pressure at r (r < R), then the correct option(s) are:
A. P (r = 0) = 0
B. $\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}$
C. $\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}$
D. $\dfrac{P(r=R/2)}{P(r=R/3)}=\dfrac{20}{27}$
Answer
571.5k+ views
Hint: Let g be the acceleration at the direction of the element at distance r from the centre O due to gravity. The difference in pressure (dp) on the two sides of the part in equilibrium is pressure by gravity per unit area.
Complete step by step answer:
So, we have
\[-dp=\rho gdr\]
Now,
Let the mass of the spherical body with radius r be m
So, now
We have
\[m=\dfrac{4}{3}\pi {{r}^{2}}\rho \]
Also,
\[\Rightarrow g=\dfrac{Gm}{{{r}^{2}}}\]
\[\Rightarrow g=\dfrac{G}{{{r}^{2}}}\times \dfrac{4}{3}\pi {{r}^{3}}\rho \]
\[\Rightarrow g=\dfrac{4}{3}G\pi r\rho \]
By using the above values,
\[dp=-\rho (\dfrac{4}{3}\pi G\rho r)dr\]
Integrating both side from P(=R) to P(=r)
We have
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=\int\limits_{P(=R)}^{P(=r)}{\rho (-\dfrac{4}{3}G\pi \rho r)}dr\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=-\dfrac{4}{3}G\pi {{\rho }^{2}}\int\limits_{P(=R)}^{P(=r)}{r}dr\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=-\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{r}^{2}}}{2}]_{R}^{r}\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
\[\Rightarrow P(r)-P(R)=\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
For,
P(R) = 0, we have P(r) = \[\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
Now,
When r = 0, P(r) = \[\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}}{2}]\]
For, $P(r=3R/4)andP(r=2R/3)$
We have
$\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}$
Also, $P(r=3R/5)$ and $P(r=2R/5)$
We have
$\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}$
Now again
For,
\[P(r=R/2)\]and \[P(r=R/3)\]
$\dfrac{P(r=R/2)}{P(r=R/3)}=\dfrac{27}{32}$
Therefore, Option – B and Option – C are the correct relations, i.e.,
B. $\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}$
C. $\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}$
Note: In many instances, one may misunderstand the formula of buoyancy for the formula of pressure. Keep in mind that the formula for pressure uses height, whereas, the one for buoyancy uses volume.
Complete step by step answer:
So, we have
\[-dp=\rho gdr\]
Now,
Let the mass of the spherical body with radius r be m
So, now
We have
\[m=\dfrac{4}{3}\pi {{r}^{2}}\rho \]
Also,
\[\Rightarrow g=\dfrac{Gm}{{{r}^{2}}}\]
\[\Rightarrow g=\dfrac{G}{{{r}^{2}}}\times \dfrac{4}{3}\pi {{r}^{3}}\rho \]
\[\Rightarrow g=\dfrac{4}{3}G\pi r\rho \]
By using the above values,
\[dp=-\rho (\dfrac{4}{3}\pi G\rho r)dr\]
Integrating both side from P(=R) to P(=r)
We have
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=\int\limits_{P(=R)}^{P(=r)}{\rho (-\dfrac{4}{3}G\pi \rho r)}dr\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=-\dfrac{4}{3}G\pi {{\rho }^{2}}\int\limits_{P(=R)}^{P(=r)}{r}dr\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=-\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{r}^{2}}}{2}]_{R}^{r}\]
\[\Rightarrow \int\limits_{P(=R)}^{P(=r)}{dp}=\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
\[\Rightarrow P(r)-P(R)=\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
For,
P(R) = 0, we have P(r) = \[\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}-{{r}^{2}}}{2}]\]
Now,
When r = 0, P(r) = \[\dfrac{4}{3}G\pi {{\rho }^{2}}[\dfrac{{{R}^{2}}}{2}]\]
For, $P(r=3R/4)andP(r=2R/3)$
We have
$\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}$
Also, $P(r=3R/5)$ and $P(r=2R/5)$
We have
$\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}$
Now again
For,
\[P(r=R/2)\]and \[P(r=R/3)\]
$\dfrac{P(r=R/2)}{P(r=R/3)}=\dfrac{27}{32}$
Therefore, Option – B and Option – C are the correct relations, i.e.,
B. $\dfrac{P(r=3R/4)}{P(r=2R/3)}=\dfrac{63}{80}$
C. $\dfrac{P(r=3R/5)}{P(r=2R/5)}=\dfrac{16}{21}$
Note: In many instances, one may misunderstand the formula of buoyancy for the formula of pressure. Keep in mind that the formula for pressure uses height, whereas, the one for buoyancy uses volume.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

