
A solution of glucose $ \left[ \text{M}\cdot \text{M=180 g mo}{{\text{l}}^{-1}} \right] $ in water has a boiling point of same solution metal constants for water $ {{\text{K}}_{\text{s}}} $ and $ {{\text{K}}_{\text{b}}} $ are $ 1\cdot 86\text{ kg mo}{{\text{l}}^{-1}} $ and $ 0\cdot 512\text{ K kg} $ most respectively.
Answer
543k+ views
Hint: Freezing Point: Freezing point of a substance is defined as the temperature at which the vapour pressure of its liquid is equal to the vapour pressure of corresponding solid.
The difference between the freezing points of pure solvent and its solution is called depression in freezing point.
Depression in freezing point:
$ \Delta {{\text{T}}_{\text{f}}} $ =Freezing point of the solvent $ - $ Freezing point of solution.
$ \Delta {{\text{T}}_{\text{f}}} $
Where $ {{\text{K}}_{\text{f}}} $ cryoscopy constant and m is molality of solution
Complete step by step solution
Here the solution of glucose is prepared by adding glucose into water.
So that, Boiling point of pure solvent [water] $ =100{}^\circ \text{ C} $
Boiling point of solution $ =109\cdot 20{}^\circ \text{ C} $
Elevation in Boiling point=Boiling point of solution $ - $ Boiling point of
$ \Delta {{\text{T}}_{\text{f}}} $
Where $ {{\text{K}}_{\text{b}}} $ =Ebullioscopic constant
m=Molality of solution
$ \Delta {{\text{T}}_{\text{f}}} $ ………. (1)
Where $ {{\text{K}}_{\text{b}}} $ (Given) = $ 0\cdot 512 $
Put the value of $ \Delta {{\text{T}}_{\text{f}}} $ & $ {{\text{K}}_{\text{b}}} $ in equation (1) and we get value of ‘m’
$ \text{m}=\dfrac{\Delta \text{T}}{{{\text{K}}_{\text{b}}}} $
$ \text{m}=\dfrac{9\cdot 20}{0\cdot 512} $
After solving we get m= $ 17\cdot 968\cong 17\cdot 97 $
Now freezing point of pure solvent [Water $ 0{}^\circ $ ]
$ {{\text{K}}_{\text{f}}} $ Of water given $ =1\cdot 86\text{ k/m} $
$ \Delta {{\text{T}}_{\text{f}}} $
Put the value of $ {{\text{T}}_{\text{f}}}\text{ }{{\text{K}}_{\text{b}}} $ and m we get the value $ {{\text{T}}_{\text{S}}} $
$ \begin{align}
& {{\text{T}}_{\text{s}}}={{\text{T}}_{\text{f}}}-{{\text{K}}_{\text{b}}}\text{m} \\
& \text{ =0}{}^\circ \text{ C}-1\cdot 86\times 17\cdot 97{}^\circ \text{ C} \\
& \text{ }=0-33\cdot 42{}^\circ \text{ C} \\
& \text{ }=-33\cdot 42{}^\circ \text{ C} \\
\end{align} $
$ \because $ Freezing point of the solution
$ {{\text{T}}_{\text{s}}}=-33\cdot 42{}^\circ \text{ C} $ .
Note
Anti freezing solutions: Water is used in the radiators of cars and other automobiles.
In some countries, where atmospheric temperature less than zero, the water present in radiator freezes, in these condition anti freezing solution are used
Anti-freezing solution is prepared by dissolving ethylene glycol in water. Freezing points can be lowered to the desired extent by varying the concentration of ethylene glycol.
Freezing mixture: It is a mixture of ice and common salt (NaCl). It is used in the making of ice cream and in the labs to create low temperatures.
The difference between the freezing points of pure solvent and its solution is called depression in freezing point.
Depression in freezing point:
$ \Delta {{\text{T}}_{\text{f}}} $ =Freezing point of the solvent $ - $ Freezing point of solution.
$ \Delta {{\text{T}}_{\text{f}}} $
Where $ {{\text{K}}_{\text{f}}} $ cryoscopy constant and m is molality of solution
Complete step by step solution
Here the solution of glucose is prepared by adding glucose into water.
So that, Boiling point of pure solvent [water] $ =100{}^\circ \text{ C} $
Boiling point of solution $ =109\cdot 20{}^\circ \text{ C} $
Elevation in Boiling point=Boiling point of solution $ - $ Boiling point of
$ \Delta {{\text{T}}_{\text{f}}} $
Where $ {{\text{K}}_{\text{b}}} $ =Ebullioscopic constant
m=Molality of solution
$ \Delta {{\text{T}}_{\text{f}}} $ ………. (1)
Where $ {{\text{K}}_{\text{b}}} $ (Given) = $ 0\cdot 512 $
Put the value of $ \Delta {{\text{T}}_{\text{f}}} $ & $ {{\text{K}}_{\text{b}}} $ in equation (1) and we get value of ‘m’
$ \text{m}=\dfrac{\Delta \text{T}}{{{\text{K}}_{\text{b}}}} $
$ \text{m}=\dfrac{9\cdot 20}{0\cdot 512} $
After solving we get m= $ 17\cdot 968\cong 17\cdot 97 $
Now freezing point of pure solvent [Water $ 0{}^\circ $ ]
$ {{\text{K}}_{\text{f}}} $ Of water given $ =1\cdot 86\text{ k/m} $
$ \Delta {{\text{T}}_{\text{f}}} $
Put the value of $ {{\text{T}}_{\text{f}}}\text{ }{{\text{K}}_{\text{b}}} $ and m we get the value $ {{\text{T}}_{\text{S}}} $
$ \begin{align}
& {{\text{T}}_{\text{s}}}={{\text{T}}_{\text{f}}}-{{\text{K}}_{\text{b}}}\text{m} \\
& \text{ =0}{}^\circ \text{ C}-1\cdot 86\times 17\cdot 97{}^\circ \text{ C} \\
& \text{ }=0-33\cdot 42{}^\circ \text{ C} \\
& \text{ }=-33\cdot 42{}^\circ \text{ C} \\
\end{align} $
$ \because $ Freezing point of the solution
$ {{\text{T}}_{\text{s}}}=-33\cdot 42{}^\circ \text{ C} $ .
Note
Anti freezing solutions: Water is used in the radiators of cars and other automobiles.
In some countries, where atmospheric temperature less than zero, the water present in radiator freezes, in these condition anti freezing solution are used
Anti-freezing solution is prepared by dissolving ethylene glycol in water. Freezing points can be lowered to the desired extent by varying the concentration of ethylene glycol.
Freezing mixture: It is a mixture of ice and common salt (NaCl). It is used in the making of ice cream and in the labs to create low temperatures.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

