
A solution is prepared by mixing 8.5 g of $\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ and 11.95 g of $\text{CHC}{{\text{l}}_{\text{3}}}$ . If the vapor pressure of $\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ and $\text{CHC}{{\text{l}}_{\text{3}}}$ at 298 K are 415 and 200 mm Hg respectively, the mole fraction of $\text{CHC}{{\text{l}}_{\text{3}}}$ in vapor form is:
(Molar mass of Cl is $35.5\text{ g mo}{{\text{l}}^{-1}}$ )
Answer
522.9k+ views
Hint: The mole fraction of a component in the vapor phase can be calculated by using the formula:
\[{{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}=\dfrac{{{\text{p}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}}{{{\text{p}}_{\text{Total}}}}\]
Where ${{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}$ is the mole fraction of $\text{CHC}{{\text{l}}_{\text{3}}}$ in vapor phase, ${{\text{p}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}$ is the partial vapor pressure of $\text{CHC}{{\text{l}}_{\text{3}}}$ , and ${{\text{p}}_{\text{Total}}}$ is the total pressure of the solution.
Complete answer:
Raoult’s Law gives the relationship between the vapor pressure at a given temperature and mole fraction. According to this law given by Raoult, the vapor pressure (p) of a liquid component in an ideal mixture is directly proportional to its mole fraction (x). Mathematically,
\[\begin{align}
& \text{p}\propto \text{x} \\
& \Rightarrow \text{p}={{\text{p}}^{\text{o}}}\text{x} \\
\end{align}\]
Where ${{\text{p}}^{\text{o}}}$ is the vapor pressure of the component in the pure state.
For a mixture of $\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ and $\text{CHC}{{\text{l}}_{\text{3}}}$, we can write:
\[\begin{align}
& {{\text{p}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=\text{p}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}^{\text{o}}{{\text{x}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}} \\
& {{\text{p}}_{\text{CHC}{{\text{l}}_{3}}}}=\text{p}_{\text{CHC}{{\text{l}}_{3}}}^{\text{o}}{{\text{x}}_{\text{CHC}{{\text{l}}_{3}}}} \\
\end{align}\]
So, first, we need to find the mole fraction of each component present in the mixture. It can be calculated as follows:
(1) – Find the number of moles.
\[\begin{align}
& {{\text{n}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=\dfrac{\text{Mass of C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}{\text{Molar mass of C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}=\dfrac{8.5\text{ g}}{85\text{ g mo}{{\text{l}}^{-1}}}=0.1\text{ moles} \\
& {{\text{n}}_{\text{CHC}{{\text{l}}_{3}}}}=\dfrac{\text{Mass of CHC}{{\text{l}}_{3}}}{\text{Molar mass of CHC}{{\text{l}}_{3}}}=\dfrac{11.95\text{ g}}{119.5\text{ g mo}{{\text{l}}^{-1}}}=0.1\text{ moles} \\
\end{align}\]
(2) – Find mole fraction.
\[\begin{align}
& {{\text{x}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=\dfrac{{{\text{n}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}}{{{\text{n}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}+{{\text{n}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}} \\
& {{\text{x}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=\dfrac{\text{0}\text{.1}}{\text{0}\text{.1}+\text{0}\text{.1}}=0.5 \\
& \text{Similarly for CHC}{{\text{l}}_{\text{3}}},\text{ }{{\text{x}}_{\text{CHC}{{\text{l}}_{3}}}}=\dfrac{\text{0}\text{.1}}{\text{0}\text{.1}+\text{0}\text{.1}}=0.5 \\
\end{align}\]
Now, let us find the partial pressure of each component.
\[\begin{align}
& {{\text{p}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=\text{p}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}^{\text{o}}{{\text{x}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=415\times 0.5=207.5\text{ mm Hg} \\
& {{\text{p}}_{\text{CHC}{{\text{l}}_{3}}}}=\text{p}_{\text{CHC}{{\text{l}}_{3}}}^{\text{o}}{{\text{x}}_{\text{CHC}{{\text{l}}_{3}}}}=200\times 0.5=100\text{ mm Hg} \\
\end{align}\]
According to Dalton’s law of partial pressure, the total pressure is the sum of partial vapor pressures of each component, i.e.
\[\begin{align}
& {{\text{p}}_{\text{Total}}}={{\text{p}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}+{{\text{p}}_{\text{CHC}{{\text{l}}_{3}}}} \\
& \therefore {{\text{p}}_{\text{Total}}}=\left( 207.5+100 \right)\text{ mm Hg}=307.5\text{ mm Hg} \\
\end{align}\]
Let the mole fraction of $\text{CHC}{{\text{l}}_{\text{3}}}$ in vapor phase be ${{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}$. Then,
\[\begin{align}
& {{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}=\dfrac{{{\text{p}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}}{{{\text{p}}_{\text{Total}}}} \\
& \Rightarrow {{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}=\dfrac{\text{100}}{\text{307}\text{.5}} \\
& \Rightarrow {{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}=\text{0}\text{.32} \\
\end{align}\]
Hence, the mole fraction of $\text{CHC}{{\text{l}}_{\text{3}}}$ in vapor form is 0.32.
Note:
The mole fraction is simply a ratio of the amount of one component in a mixture and thus it has no unit. The mole fraction of any component is different in two different phases (vapor and liquid phase) because at a given temperature when both phases are present, a certain amount of component in the vapor phase will remain in equilibrium with some amount of it in the liquid phase.
\[{{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}=\dfrac{{{\text{p}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}}{{{\text{p}}_{\text{Total}}}}\]
Where ${{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}$ is the mole fraction of $\text{CHC}{{\text{l}}_{\text{3}}}$ in vapor phase, ${{\text{p}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}$ is the partial vapor pressure of $\text{CHC}{{\text{l}}_{\text{3}}}$ , and ${{\text{p}}_{\text{Total}}}$ is the total pressure of the solution.
Complete answer:
Raoult’s Law gives the relationship between the vapor pressure at a given temperature and mole fraction. According to this law given by Raoult, the vapor pressure (p) of a liquid component in an ideal mixture is directly proportional to its mole fraction (x). Mathematically,
\[\begin{align}
& \text{p}\propto \text{x} \\
& \Rightarrow \text{p}={{\text{p}}^{\text{o}}}\text{x} \\
\end{align}\]
Where ${{\text{p}}^{\text{o}}}$ is the vapor pressure of the component in the pure state.
For a mixture of $\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}$ and $\text{CHC}{{\text{l}}_{\text{3}}}$, we can write:
\[\begin{align}
& {{\text{p}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=\text{p}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}^{\text{o}}{{\text{x}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}} \\
& {{\text{p}}_{\text{CHC}{{\text{l}}_{3}}}}=\text{p}_{\text{CHC}{{\text{l}}_{3}}}^{\text{o}}{{\text{x}}_{\text{CHC}{{\text{l}}_{3}}}} \\
\end{align}\]
So, first, we need to find the mole fraction of each component present in the mixture. It can be calculated as follows:
(1) – Find the number of moles.
\[\begin{align}
& {{\text{n}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=\dfrac{\text{Mass of C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}{\text{Molar mass of C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}=\dfrac{8.5\text{ g}}{85\text{ g mo}{{\text{l}}^{-1}}}=0.1\text{ moles} \\
& {{\text{n}}_{\text{CHC}{{\text{l}}_{3}}}}=\dfrac{\text{Mass of CHC}{{\text{l}}_{3}}}{\text{Molar mass of CHC}{{\text{l}}_{3}}}=\dfrac{11.95\text{ g}}{119.5\text{ g mo}{{\text{l}}^{-1}}}=0.1\text{ moles} \\
\end{align}\]
(2) – Find mole fraction.
\[\begin{align}
& {{\text{x}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=\dfrac{{{\text{n}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}}{{{\text{n}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}+{{\text{n}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}} \\
& {{\text{x}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=\dfrac{\text{0}\text{.1}}{\text{0}\text{.1}+\text{0}\text{.1}}=0.5 \\
& \text{Similarly for CHC}{{\text{l}}_{\text{3}}},\text{ }{{\text{x}}_{\text{CHC}{{\text{l}}_{3}}}}=\dfrac{\text{0}\text{.1}}{\text{0}\text{.1}+\text{0}\text{.1}}=0.5 \\
\end{align}\]
Now, let us find the partial pressure of each component.
\[\begin{align}
& {{\text{p}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=\text{p}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}^{\text{o}}{{\text{x}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}=415\times 0.5=207.5\text{ mm Hg} \\
& {{\text{p}}_{\text{CHC}{{\text{l}}_{3}}}}=\text{p}_{\text{CHC}{{\text{l}}_{3}}}^{\text{o}}{{\text{x}}_{\text{CHC}{{\text{l}}_{3}}}}=200\times 0.5=100\text{ mm Hg} \\
\end{align}\]
According to Dalton’s law of partial pressure, the total pressure is the sum of partial vapor pressures of each component, i.e.
\[\begin{align}
& {{\text{p}}_{\text{Total}}}={{\text{p}}_{\text{C}{{\text{H}}_{\text{2}}}\text{C}{{\text{l}}_{\text{2}}}}}+{{\text{p}}_{\text{CHC}{{\text{l}}_{3}}}} \\
& \therefore {{\text{p}}_{\text{Total}}}=\left( 207.5+100 \right)\text{ mm Hg}=307.5\text{ mm Hg} \\
\end{align}\]
Let the mole fraction of $\text{CHC}{{\text{l}}_{\text{3}}}$ in vapor phase be ${{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}$. Then,
\[\begin{align}
& {{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}=\dfrac{{{\text{p}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}}{{{\text{p}}_{\text{Total}}}} \\
& \Rightarrow {{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}=\dfrac{\text{100}}{\text{307}\text{.5}} \\
& \Rightarrow {{\text{y}}_{\text{CHC}{{\text{l}}_{\text{3}}}}}=\text{0}\text{.32} \\
\end{align}\]
Hence, the mole fraction of $\text{CHC}{{\text{l}}_{\text{3}}}$ in vapor form is 0.32.
Note:
The mole fraction is simply a ratio of the amount of one component in a mixture and thus it has no unit. The mole fraction of any component is different in two different phases (vapor and liquid phase) because at a given temperature when both phases are present, a certain amount of component in the vapor phase will remain in equilibrium with some amount of it in the liquid phase.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

