
A solid cylinder of mass 50kg and radius 0.5m is free to rotate about the horizontal axis. A massless string is wound round the cylinder with one end attached to it and other hanging freely. Tension in the string required to produce an angular acceleration of 2 $ { revolutions }/{ { s }^{ -2 } }$ is:-
A. 25 N
B. 50 N
C. 78.5 N
D. 157 N
Answer
574.5k+ views
Hint: Use the formula of torque in terms of tension and radius. But we know, torque is also related to angular acceleration and inertia. Now, write inertia in terms of mass and radius. Substitute the values and calculate tension in the string.
Formula used:
$ \tau \quad =\quad T\quad \times \quad r$
$ \tau \quad =\quad I\quad \times \quad \alpha$
$ I\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 }$
Complete answer:
Given: Mass of solid cylinder (m) = 50kg
Radius of cylinder (R)= 0.5m
Angular acceleration ($\alpha$)= $ 2\quad { rev }/{ { s }^{ -2 } }$ = $ 2\quad \times \quad 2\pi { { rad }/{ { s }^{ -2 } } }$
Torque is given by,
$ \tau \quad =\quad T\quad \times \quad r$ …(1)
where, $\tau$ : Torque
T : Tension in the string
R: Radius of cylinder
Rearranging equation.(1) we get,
$ T=\quad \dfrac { \tau }{ R }$ …(2)
We know, $ \tau \quad =\quad I\quad \times \quad \alpha$
Therefore, equation.(2) becomes
$ T\quad =\quad \dfrac { I\quad \times \quad \alpha }{ R }$
where, I: Rotational Inertia
But, $ I\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 }$
$ \Rightarrow T\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 } \times \quad \dfrac { \alpha }{ R }$
$ \Rightarrow T\quad =\quad \dfrac { m{ R }\alpha }{ 2 }$
$ \Rightarrow T\quad =\quad \dfrac { 50\quad \times \quad { 0.5\quad \times \quad }4\pi }{ 2 }$
$ \Rightarrow T\quad =\quad 157.08$
Therefore, tension in the string required to produce an angular acceleration of 2 revolutions $ { s }^{ -2 }$ is 157N.
So, the correct answer is “Option D”.
Note:
Make sure you convert unit of angular acceleration from $ { revolutions }/{ { s }^{ -2 } }$ to $ { { rad }/{ { s }^{ -2 } } }$. There are 2$\pi$ radians in a complete revolution. So to get total angular acceleration, multiply $ { revolutions }/{ { s }^{ -2 } }$ with $ 2\pi { { rad }/{ { s }^{ -2 } } }$.
Formula used:
$ \tau \quad =\quad T\quad \times \quad r$
$ \tau \quad =\quad I\quad \times \quad \alpha$
$ I\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 }$
Complete answer:
Given: Mass of solid cylinder (m) = 50kg
Radius of cylinder (R)= 0.5m
Angular acceleration ($\alpha$)= $ 2\quad { rev }/{ { s }^{ -2 } }$ = $ 2\quad \times \quad 2\pi { { rad }/{ { s }^{ -2 } } }$
Torque is given by,
$ \tau \quad =\quad T\quad \times \quad r$ …(1)
where, $\tau$ : Torque
T : Tension in the string
R: Radius of cylinder
Rearranging equation.(1) we get,
$ T=\quad \dfrac { \tau }{ R }$ …(2)
We know, $ \tau \quad =\quad I\quad \times \quad \alpha$
Therefore, equation.(2) becomes
$ T\quad =\quad \dfrac { I\quad \times \quad \alpha }{ R }$
where, I: Rotational Inertia
But, $ I\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 }$
$ \Rightarrow T\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 } \times \quad \dfrac { \alpha }{ R }$
$ \Rightarrow T\quad =\quad \dfrac { m{ R }\alpha }{ 2 }$
$ \Rightarrow T\quad =\quad \dfrac { 50\quad \times \quad { 0.5\quad \times \quad }4\pi }{ 2 }$
$ \Rightarrow T\quad =\quad 157.08$
Therefore, tension in the string required to produce an angular acceleration of 2 revolutions $ { s }^{ -2 }$ is 157N.
So, the correct answer is “Option D”.
Note:
Make sure you convert unit of angular acceleration from $ { revolutions }/{ { s }^{ -2 } }$ to $ { { rad }/{ { s }^{ -2 } } }$. There are 2$\pi$ radians in a complete revolution. So to get total angular acceleration, multiply $ { revolutions }/{ { s }^{ -2 } }$ with $ 2\pi { { rad }/{ { s }^{ -2 } } }$.
Recently Updated Pages
Distinguish between open and closed circulation class 11 biology CBSE

The element with atomic number Z 115 will be placed class 11 chemistry CBSE

The point of intersection of the curves whose parametric class 11 maths CBSE

How many ATP are formed from NADPH + to NAD + a 2 ATP class 11 biology CBSE

Oxygen molecule is formed by AOne axial ss overlap class 11 chemistry CBSE

Intramolecular hydrogen bonding is found in A salicylaldehyde class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

