
A solid cylinder of mass 50kg and radius 0.5m is free to rotate about the horizontal axis. A massless string is wound round the cylinder with one end attached to it and other hanging freely. Tension in the string required to produce an angular acceleration of 2 $ { revolutions }/{ { s }^{ -2 } }$ is:-
A. 25 N
B. 50 N
C. 78.5 N
D. 157 N
Answer
575.1k+ views
Hint: Use the formula of torque in terms of tension and radius. But we know, torque is also related to angular acceleration and inertia. Now, write inertia in terms of mass and radius. Substitute the values and calculate tension in the string.
Formula used:
$ \tau \quad =\quad T\quad \times \quad r$
$ \tau \quad =\quad I\quad \times \quad \alpha$
$ I\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 }$
Complete answer:
Given: Mass of solid cylinder (m) = 50kg
Radius of cylinder (R)= 0.5m
Angular acceleration ($\alpha$)= $ 2\quad { rev }/{ { s }^{ -2 } }$ = $ 2\quad \times \quad 2\pi { { rad }/{ { s }^{ -2 } } }$
Torque is given by,
$ \tau \quad =\quad T\quad \times \quad r$ …(1)
where, $\tau$ : Torque
T : Tension in the string
R: Radius of cylinder
Rearranging equation.(1) we get,
$ T=\quad \dfrac { \tau }{ R }$ …(2)
We know, $ \tau \quad =\quad I\quad \times \quad \alpha$
Therefore, equation.(2) becomes
$ T\quad =\quad \dfrac { I\quad \times \quad \alpha }{ R }$
where, I: Rotational Inertia
But, $ I\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 }$
$ \Rightarrow T\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 } \times \quad \dfrac { \alpha }{ R }$
$ \Rightarrow T\quad =\quad \dfrac { m{ R }\alpha }{ 2 }$
$ \Rightarrow T\quad =\quad \dfrac { 50\quad \times \quad { 0.5\quad \times \quad }4\pi }{ 2 }$
$ \Rightarrow T\quad =\quad 157.08$
Therefore, tension in the string required to produce an angular acceleration of 2 revolutions $ { s }^{ -2 }$ is 157N.
So, the correct answer is “Option D”.
Note:
Make sure you convert unit of angular acceleration from $ { revolutions }/{ { s }^{ -2 } }$ to $ { { rad }/{ { s }^{ -2 } } }$. There are 2$\pi$ radians in a complete revolution. So to get total angular acceleration, multiply $ { revolutions }/{ { s }^{ -2 } }$ with $ 2\pi { { rad }/{ { s }^{ -2 } } }$.
Formula used:
$ \tau \quad =\quad T\quad \times \quad r$
$ \tau \quad =\quad I\quad \times \quad \alpha$
$ I\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 }$
Complete answer:
Given: Mass of solid cylinder (m) = 50kg
Radius of cylinder (R)= 0.5m
Angular acceleration ($\alpha$)= $ 2\quad { rev }/{ { s }^{ -2 } }$ = $ 2\quad \times \quad 2\pi { { rad }/{ { s }^{ -2 } } }$
Torque is given by,
$ \tau \quad =\quad T\quad \times \quad r$ …(1)
where, $\tau$ : Torque
T : Tension in the string
R: Radius of cylinder
Rearranging equation.(1) we get,
$ T=\quad \dfrac { \tau }{ R }$ …(2)
We know, $ \tau \quad =\quad I\quad \times \quad \alpha$
Therefore, equation.(2) becomes
$ T\quad =\quad \dfrac { I\quad \times \quad \alpha }{ R }$
where, I: Rotational Inertia
But, $ I\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 }$
$ \Rightarrow T\quad =\quad \dfrac { m{ R }^{ 2 } }{ 2 } \times \quad \dfrac { \alpha }{ R }$
$ \Rightarrow T\quad =\quad \dfrac { m{ R }\alpha }{ 2 }$
$ \Rightarrow T\quad =\quad \dfrac { 50\quad \times \quad { 0.5\quad \times \quad }4\pi }{ 2 }$
$ \Rightarrow T\quad =\quad 157.08$
Therefore, tension in the string required to produce an angular acceleration of 2 revolutions $ { s }^{ -2 }$ is 157N.
So, the correct answer is “Option D”.
Note:
Make sure you convert unit of angular acceleration from $ { revolutions }/{ { s }^{ -2 } }$ to $ { { rad }/{ { s }^{ -2 } } }$. There are 2$\pi$ radians in a complete revolution. So to get total angular acceleration, multiply $ { revolutions }/{ { s }^{ -2 } }$ with $ 2\pi { { rad }/{ { s }^{ -2 } } }$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

