
A solenoid is $1.5\,m$ long and its inner diameter is $4.0\,cm$. It has three layers of windings of $1000$ turns each and carries a current of $2.0\,amperes$. The magnetic flux for a cross-section of the solenoid is nearly.
A) $4.1 \times {10^{ - 5}}\,weber$
B) $5.2 \times {10^{ - 5}}\,weber$
C) $6.31 \times {10^{ - 3}}\,weber$
D) $2.5 \times {10^{ - 7}}\,weber$
Answer
561.3k+ views
Hint:Here we have to use the formula of cross-sectional area of solenoid and then use the formula of magnetic flux.
Magnetic flux is defined as the number of magnetic field lines flowing through the closed surface. It is used to calculate the overall magnetic field that passes through a given surface.
Magnetic flux is the cause of the field surrounding the magnetic material. It consists of photons, but unlike the light we obtain from the Sun, it is at a much lower level.
Complete step by step solution:
Magnetic field is a vector field that defines the magnetic effect on the passage of electrical charges, electrical currents and magnetised objects. A charge that travels in a magnetic field encounters a force perpendicular to its own momentum and to the magnetic field.
The Biot-savart law can be used to calculate the magnetic field strength of the current section.
Given,
Length of the solenoid, $l = 1.5\,m$
Diameter of the solenoid $d = 4\,cm = 0.04\,m$
Cross-sectional area of the solenoid is given by:
$
A = \dfrac{{\pi {d^2}}}
{4} \\
= \dfrac{{3.14 \times {{\left( {0.04} \right)}^2}}}
{4} \\
= 1.256 \times {10^{ - 3}}\,{m^2} \\
$
Total number of turns,
$N = 3 \times 1000 = 3000$
Number of turns per unit length,
$
n = \dfrac{N}
{l} \\
= \dfrac{{3000}}
{{1.5}} \\
= 2000 \\
$
Biot-Savart law is given by:
$
B = {\mu _ \circ }nI \\
= 4\pi \times {10^{ - 7}} \times 2000 \times 2 \\
= 5.024 \times {10^{ - 3}}\,Wb{m^{ - 2}} \\
$
Magnetic flux is given by:
$\phi = BA$
Since, the magnetic flux passes through $1000$ loops, then
$
\phi = 1000 \times 2.054 \times {10^{ - 3}} \times 1.256 \times {10^{ - 3}} \\
= 6.31 \times {10^{ - 3}}\,Wb \\
$
Hence, option C is correct.
Thus, the magnetic flux for a cross-section of the solenoid is nearly $6.31 \times {10^{ - 3}}\,Wb$ .
Note:
Here we have to see whether the number of turns is given or not. Also, we have to observe whether length of material is given or not. If given then, we have to divide the number of turns by the length to get the number of turns per unit length of the material.
Magnetic flux is defined as the number of magnetic field lines flowing through the closed surface. It is used to calculate the overall magnetic field that passes through a given surface.
Magnetic flux is the cause of the field surrounding the magnetic material. It consists of photons, but unlike the light we obtain from the Sun, it is at a much lower level.
Complete step by step solution:
Magnetic field is a vector field that defines the magnetic effect on the passage of electrical charges, electrical currents and magnetised objects. A charge that travels in a magnetic field encounters a force perpendicular to its own momentum and to the magnetic field.
The Biot-savart law can be used to calculate the magnetic field strength of the current section.
Given,
Length of the solenoid, $l = 1.5\,m$
Diameter of the solenoid $d = 4\,cm = 0.04\,m$
Cross-sectional area of the solenoid is given by:
$
A = \dfrac{{\pi {d^2}}}
{4} \\
= \dfrac{{3.14 \times {{\left( {0.04} \right)}^2}}}
{4} \\
= 1.256 \times {10^{ - 3}}\,{m^2} \\
$
Total number of turns,
$N = 3 \times 1000 = 3000$
Number of turns per unit length,
$
n = \dfrac{N}
{l} \\
= \dfrac{{3000}}
{{1.5}} \\
= 2000 \\
$
Biot-Savart law is given by:
$
B = {\mu _ \circ }nI \\
= 4\pi \times {10^{ - 7}} \times 2000 \times 2 \\
= 5.024 \times {10^{ - 3}}\,Wb{m^{ - 2}} \\
$
Magnetic flux is given by:
$\phi = BA$
Since, the magnetic flux passes through $1000$ loops, then
$
\phi = 1000 \times 2.054 \times {10^{ - 3}} \times 1.256 \times {10^{ - 3}} \\
= 6.31 \times {10^{ - 3}}\,Wb \\
$
Hence, option C is correct.
Thus, the magnetic flux for a cross-section of the solenoid is nearly $6.31 \times {10^{ - 3}}\,Wb$ .
Note:
Here we have to see whether the number of turns is given or not. Also, we have to observe whether length of material is given or not. If given then, we have to divide the number of turns by the length to get the number of turns per unit length of the material.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Plot a graph between potential difference V and current class 12 physics CBSE

