
A siren placed at a railway platform is emitting a sound of frequency 5 kHz. A passenger sitting in a moving train A records a frequency of 5.5 kHz when the train approaches the siren. During his journey in a different train B he records the frequency of 6 kHz while approaching the same siren. The ratio of velocity of train B to train A is:
A. \[\dfrac{{242}}{{252}}\]
B. \[\dfrac{5}{6}\]
C. \[2\]
D. \[\dfrac{{11}}{6}\]
Answer
575.7k+ views
Hint: The concept of apparent frequency is used to resolve the problem. The apparent frequency heard is calculated by undertaking the original frequency along with velocity of sound and the velocity of the observer.
Complete Step by Step Answer:Given:
Original frequency of the siren is, \[{f_0} = 5\;{\rm{kHz}}\].
Apparent frequency heard for train A is, \[{f_1} = 5.5\;{\rm{kHz}}\]
Apparent frequency heard for train B is, \[{f_2} = 6\;{\rm{kHz}}\]
Let the speed of train A and B be \[{v_A}\] and \[{v_B}\].
The formula for the apparent speed for train A is,
\[f = {f_0}\left[ {\dfrac{{{v_s} + {v_A}}}{{{v_s}}}} \right]\]
Here, \[{v_s}\] is the speed of sound and its standard value in air is 330 m/s.
Solving for train A as,
\[\begin{array}{l}
{f_1} = {f_0}\left[ {\dfrac{{{v_s} + {v_A}}}{{{v_s}}}} \right]\\
5.5\;{\rm{Hz}} = 5\;{\rm{Hz}}\left[ {\dfrac{{330\;{\rm{m/s}} + {v_A}}}{{330\;{\rm{m/s}}}}} \right]\\
{v_A} = 33\;{\rm{m/s}}...................................................\left( 1 \right)
\end{array}\]
Solving for train B as,
\[\begin{array}{l}
{f_2} = {f_0}\left[ {\dfrac{{{v_s} + {v_B}}}{{{v_s}}}} \right]\\
6\;{\rm{Hz}} = 5\;{\rm{Hz}}\left[ {\dfrac{{330\;{\rm{m/s}} + {v_B}}}{{330\;{\rm{m/s}}}}} \right]\\
{v_B} = 66\;{\rm{m/s}}...................................................\left( 2 \right)
\end{array}\]
Taking ratio of equation 1 and 2 as,
\[\begin{array}{l}
\dfrac{{{v_B}}}{{{v_A}}} = \dfrac{{66\;{\rm{m/s}}}}{{33\;{\rm{m/s}}}}\\
\dfrac{{{v_B}}}{{{v_A}}} = 2
\end{array}\]
Therefore, the required ratio of velocity of train B to train A is 2 and the correct option is C.
Note:The correct mathematical formula for the apparent frequency is to be remembered and the concept of apparent frequency is to be known along with the direction of source of sound. And the value of speed of sound in air should be known.
Complete Step by Step Answer:Given:
Original frequency of the siren is, \[{f_0} = 5\;{\rm{kHz}}\].
Apparent frequency heard for train A is, \[{f_1} = 5.5\;{\rm{kHz}}\]
Apparent frequency heard for train B is, \[{f_2} = 6\;{\rm{kHz}}\]
Let the speed of train A and B be \[{v_A}\] and \[{v_B}\].
The formula for the apparent speed for train A is,
\[f = {f_0}\left[ {\dfrac{{{v_s} + {v_A}}}{{{v_s}}}} \right]\]
Here, \[{v_s}\] is the speed of sound and its standard value in air is 330 m/s.
Solving for train A as,
\[\begin{array}{l}
{f_1} = {f_0}\left[ {\dfrac{{{v_s} + {v_A}}}{{{v_s}}}} \right]\\
5.5\;{\rm{Hz}} = 5\;{\rm{Hz}}\left[ {\dfrac{{330\;{\rm{m/s}} + {v_A}}}{{330\;{\rm{m/s}}}}} \right]\\
{v_A} = 33\;{\rm{m/s}}...................................................\left( 1 \right)
\end{array}\]
Solving for train B as,
\[\begin{array}{l}
{f_2} = {f_0}\left[ {\dfrac{{{v_s} + {v_B}}}{{{v_s}}}} \right]\\
6\;{\rm{Hz}} = 5\;{\rm{Hz}}\left[ {\dfrac{{330\;{\rm{m/s}} + {v_B}}}{{330\;{\rm{m/s}}}}} \right]\\
{v_B} = 66\;{\rm{m/s}}...................................................\left( 2 \right)
\end{array}\]
Taking ratio of equation 1 and 2 as,
\[\begin{array}{l}
\dfrac{{{v_B}}}{{{v_A}}} = \dfrac{{66\;{\rm{m/s}}}}{{33\;{\rm{m/s}}}}\\
\dfrac{{{v_B}}}{{{v_A}}} = 2
\end{array}\]
Therefore, the required ratio of velocity of train B to train A is 2 and the correct option is C.
Note:The correct mathematical formula for the apparent frequency is to be remembered and the concept of apparent frequency is to be known along with the direction of source of sound. And the value of speed of sound in air should be known.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

