
a) simplify $ 3x(4x - 5) + 3 $ and find its value for
i. $ x = 3 $
ii. $ x = 1/2 $
b) Simplify $ a({a^2} + a + 1) + 5 $ and find its value for
i) a=0
ii) a=1
iii)a= -1
Answer
569.7k+ views
Hint: Simplify the given equation using BODMAS and substitute the given value of x in the simplified equation so as to obtain the required value of the given expression.
Complete step-by-step answer:
$3x(4x - 5) + 3$
Simplifying:
$(3x \times 4x) - (3x \times 5) + 3$
$ = 12{x^2} - 15x + 3$ (multiplying like terms)
Substituting the given values of x to find the value
i) $x = 3$
$12{x^2} - 15x + 3 = 12 \times {3^2} - 15(3) + 3$
$ = 12 \times 9 - (15 \times 3) + 3$
$
= 108 - 45 + 3 \\
= 108 - 42 \\
= 66 \\
$
ii) $x = 1/2$
$12{x^2} - 15x + 3 = 12{(1/2)^2} - 15(1/2) + 3$
$
= (12 \times 1/4) - (15/2) + 3 \\
= 3 - (15/2) + 3 \\
= 6 - 15/2 \\
$
Taking LCM, We have:
$
= (6 \times 2 - 15)/2 \\
= (12 - 15)/2 \\
= - 3/2 \\
$
Therefore, the value of given expression for $x = 3$is 66 and for $x = 1/2$is (-3/2)
b) $a({a^2} + a + 1) + 5$
simplifying:
$
a \times {a^2} + a \times a + 1 \times a + 5 \\
= {a^3} + {a^2} + a + 5 \\
$
Substituting given value of x to find the value
i) a=0
${a^3} + {a^2} + a + 5 = {(0)^3} + {(0)^2} + (0) + 5$
$ = 5$
ii) a=1
${a^3} + {a^2} + a + 5 = {(1)^3} + {(1)^2} + (1) + 5$
$
= 1 + 1 + 1 + 5 \\
= 8 \\
$
iii) a=-1
${a^3} + {a^2} + a + 5 = {( - 1)^3} + {( - 1)^2} + ( - 1) + 5$
=${( - 1)^{}} + {(1)^{}} + ( - 1) + 5$
\[
= - 2 + 6 \\
= 4 \\
\]
Therefore, the value of the given expression for a=0, is 5, a= 1 is 8 and for a=-1 is 4.
Note: Even power of (-1) gives positive 1 while odd powers gives negative 1.
Always follow BODMAS for simplification and enclose negative terms in brackets so as to reduce the chance of making calculation mistakes.
Complete step-by-step answer:
$3x(4x - 5) + 3$
Simplifying:
$(3x \times 4x) - (3x \times 5) + 3$
$ = 12{x^2} - 15x + 3$ (multiplying like terms)
Substituting the given values of x to find the value
i) $x = 3$
$12{x^2} - 15x + 3 = 12 \times {3^2} - 15(3) + 3$
$ = 12 \times 9 - (15 \times 3) + 3$
$
= 108 - 45 + 3 \\
= 108 - 42 \\
= 66 \\
$
ii) $x = 1/2$
$12{x^2} - 15x + 3 = 12{(1/2)^2} - 15(1/2) + 3$
$
= (12 \times 1/4) - (15/2) + 3 \\
= 3 - (15/2) + 3 \\
= 6 - 15/2 \\
$
Taking LCM, We have:
$
= (6 \times 2 - 15)/2 \\
= (12 - 15)/2 \\
= - 3/2 \\
$
Therefore, the value of given expression for $x = 3$is 66 and for $x = 1/2$is (-3/2)
b) $a({a^2} + a + 1) + 5$
simplifying:
$
a \times {a^2} + a \times a + 1 \times a + 5 \\
= {a^3} + {a^2} + a + 5 \\
$
Substituting given value of x to find the value
i) a=0
${a^3} + {a^2} + a + 5 = {(0)^3} + {(0)^2} + (0) + 5$
$ = 5$
ii) a=1
${a^3} + {a^2} + a + 5 = {(1)^3} + {(1)^2} + (1) + 5$
$
= 1 + 1 + 1 + 5 \\
= 8 \\
$
iii) a=-1
${a^3} + {a^2} + a + 5 = {( - 1)^3} + {( - 1)^2} + ( - 1) + 5$
=${( - 1)^{}} + {(1)^{}} + ( - 1) + 5$
\[
= - 2 + 6 \\
= 4 \\
\]
Therefore, the value of the given expression for a=0, is 5, a= 1 is 8 and for a=-1 is 4.
Note: Even power of (-1) gives positive 1 while odd powers gives negative 1.
Always follow BODMAS for simplification and enclose negative terms in brackets so as to reduce the chance of making calculation mistakes.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


