
a) simplify $ 3x(4x - 5) + 3 $ and find its value for
i. $ x = 3 $
ii. $ x = 1/2 $
b) Simplify $ a({a^2} + a + 1) + 5 $ and find its value for
i) a=0
ii) a=1
iii)a= -1
Answer
585.3k+ views
Hint: Simplify the given equation using BODMAS and substitute the given value of x in the simplified equation so as to obtain the required value of the given expression.
Complete step-by-step answer:
$3x(4x - 5) + 3$
Simplifying:
$(3x \times 4x) - (3x \times 5) + 3$
$ = 12{x^2} - 15x + 3$ (multiplying like terms)
Substituting the given values of x to find the value
i) $x = 3$
$12{x^2} - 15x + 3 = 12 \times {3^2} - 15(3) + 3$
$ = 12 \times 9 - (15 \times 3) + 3$
$
= 108 - 45 + 3 \\
= 108 - 42 \\
= 66 \\
$
ii) $x = 1/2$
$12{x^2} - 15x + 3 = 12{(1/2)^2} - 15(1/2) + 3$
$
= (12 \times 1/4) - (15/2) + 3 \\
= 3 - (15/2) + 3 \\
= 6 - 15/2 \\
$
Taking LCM, We have:
$
= (6 \times 2 - 15)/2 \\
= (12 - 15)/2 \\
= - 3/2 \\
$
Therefore, the value of given expression for $x = 3$is 66 and for $x = 1/2$is (-3/2)
b) $a({a^2} + a + 1) + 5$
simplifying:
$
a \times {a^2} + a \times a + 1 \times a + 5 \\
= {a^3} + {a^2} + a + 5 \\
$
Substituting given value of x to find the value
i) a=0
${a^3} + {a^2} + a + 5 = {(0)^3} + {(0)^2} + (0) + 5$
$ = 5$
ii) a=1
${a^3} + {a^2} + a + 5 = {(1)^3} + {(1)^2} + (1) + 5$
$
= 1 + 1 + 1 + 5 \\
= 8 \\
$
iii) a=-1
${a^3} + {a^2} + a + 5 = {( - 1)^3} + {( - 1)^2} + ( - 1) + 5$
=${( - 1)^{}} + {(1)^{}} + ( - 1) + 5$
\[
= - 2 + 6 \\
= 4 \\
\]
Therefore, the value of the given expression for a=0, is 5, a= 1 is 8 and for a=-1 is 4.
Note: Even power of (-1) gives positive 1 while odd powers gives negative 1.
Always follow BODMAS for simplification and enclose negative terms in brackets so as to reduce the chance of making calculation mistakes.
Complete step-by-step answer:
$3x(4x - 5) + 3$
Simplifying:
$(3x \times 4x) - (3x \times 5) + 3$
$ = 12{x^2} - 15x + 3$ (multiplying like terms)
Substituting the given values of x to find the value
i) $x = 3$
$12{x^2} - 15x + 3 = 12 \times {3^2} - 15(3) + 3$
$ = 12 \times 9 - (15 \times 3) + 3$
$
= 108 - 45 + 3 \\
= 108 - 42 \\
= 66 \\
$
ii) $x = 1/2$
$12{x^2} - 15x + 3 = 12{(1/2)^2} - 15(1/2) + 3$
$
= (12 \times 1/4) - (15/2) + 3 \\
= 3 - (15/2) + 3 \\
= 6 - 15/2 \\
$
Taking LCM, We have:
$
= (6 \times 2 - 15)/2 \\
= (12 - 15)/2 \\
= - 3/2 \\
$
Therefore, the value of given expression for $x = 3$is 66 and for $x = 1/2$is (-3/2)
b) $a({a^2} + a + 1) + 5$
simplifying:
$
a \times {a^2} + a \times a + 1 \times a + 5 \\
= {a^3} + {a^2} + a + 5 \\
$
Substituting given value of x to find the value
i) a=0
${a^3} + {a^2} + a + 5 = {(0)^3} + {(0)^2} + (0) + 5$
$ = 5$
ii) a=1
${a^3} + {a^2} + a + 5 = {(1)^3} + {(1)^2} + (1) + 5$
$
= 1 + 1 + 1 + 5 \\
= 8 \\
$
iii) a=-1
${a^3} + {a^2} + a + 5 = {( - 1)^3} + {( - 1)^2} + ( - 1) + 5$
=${( - 1)^{}} + {(1)^{}} + ( - 1) + 5$
\[
= - 2 + 6 \\
= 4 \\
\]
Therefore, the value of the given expression for a=0, is 5, a= 1 is 8 and for a=-1 is 4.
Note: Even power of (-1) gives positive 1 while odd powers gives negative 1.
Always follow BODMAS for simplification and enclose negative terms in brackets so as to reduce the chance of making calculation mistakes.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE


