Answer

Verified

411k+ views

**Hint:**To solve this question, we have to assume the cost price as x. If a number ‘y’ is increased by $k\%$, it means that ‘y’ is increased by $k\%$ of ‘y’. Numerically, ‘y’ is increased by $k\%$ of ‘y’ can be written as $y+\left( \dfrac{k}{100}\times y \right)$, similarly ‘y’ is decreased by $k\%$ of ‘y’ can be written as $y-\left( \dfrac{k}{100}\times y \right)$. We can infer that the cost price is increased by $30\%$ initially and then decreased by $15\%$ to get the final selling price. Using the above relation by taking y = x and k = 30 we get the increased cost price of the good. After that, by taking the new cost price and k = 15 in the decreased formula, we get the final selling price. By using the relation Profit or Loss = $\dfrac{S.P-C.P}{C.P}\times 100$ we get the answer. If it is positive, it is profit or gains and if it is negative, it is a loss.

**Complete step-by-step solution:**Let us assume the cost price of the good as x. We can infer that the cost price is increased by 30% initially and then decreased by $15\%$ to get the final selling price.

If a number ‘y’ is increased by k%, it means that ‘y’ is increased by $k\%$ of ‘y’. Numerically, ‘y’ is increased by $k\%$ of ‘y’ can be written as $y+\left( \dfrac{k}{100}\times y \right)$, similarly ‘y’ is decreased by $k\%$ of ‘y’ can be written as $y-\left( \dfrac{k}{100}\times y \right)$.

We should do the problem in two steps.

Step-1 Here is increasing the selling price by $30\%$ of the cost price. From the above relation, substituting y = x and k = 30 in increasing formula, we get

$S.{{P}_{1}}=x+\left( \dfrac{30}{100}\times x \right)=x+0.3x=1.3x$

Step-2 is decreasing the effective selling price after step-1 by $15\%$. From the decreasing formula above, substituting y= $S.{{P}_{1}}$ and k = $15\%$, we get

$\begin{align}

& S.{{P}_{2}}=S.{{P}_{1}}-\left( \dfrac{15}{100}\times S.{{P}_{1}} \right)=1.3x-\left( \dfrac{15}{100}\times 1.3x \right)=1.3x-\left( 0.15\times 1.3 \right)x=1.3x-.195x \\

& S.{{P}_{2}}=1.105x \\

\end{align}$

$S.{{P}_{2}}$ is the final selling price of the product.

Profit or loss is given by the formula Profit or Loss = $\dfrac{S.P-C.P}{C.P}\times 100$.

$S.P=S.{{P}_{2}}=1.105x$

$C.P=x$

Using them in the formula, we get

Profit or loss = $\dfrac{1.105x-x}{x}\times 100=\dfrac{0.105x}{x}\times 100=0.105\times 100=10.5\%$

The answer is positive. So, we can infer that it is a profit or gain of $10.5\%$.

**$\therefore $ The shopkeeper will get a gain of $10.5\%$.**

**Note:**Students can make a common mistake by just subtracting $15\%$ from $30\%$ and give an answer as $15\%$. This is done by not taking into account that the later $15\%$ discount should be applied to the increased selling price but not on the initial cost price. A systematic approach like in the above procedure will help the student is not making any mistake like this one.

Recently Updated Pages

What are the Advantages and Disadvantages of Algorithm

How do you write 0125 in scientific notation class 0 maths CBSE

The marks obtained by 50 students of class 10 out of class 11 maths CBSE

You are awaiting your class 10th results Meanwhile class 7 english CBSE

Which one of the following was not the cause of the class 10 social science CBSE

Which one of the following cities is not located on class 10 social science CBSE

Trending doubts

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write the 6 fundamental rights of India and explain in detail

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE