
A satellite is projected with velocity $ \sqrt{\dfrac{5}{6}} $ times its escape speed from earth’s surface. The initial velocity of the satellite and parallel to the surface of earth. The maximum distance of the satellite from the centre of earth will be:
Answer
545.1k+ views
Hint :By using angular momentum $ \rho $ energy conservations formulas:
(1) Angular momentum conservation $ \text{L= mVr} $
(2) Energy conservation: kinetic energy $ + $ potential energy = constant
Complete Step By Step Answer:
We know that,
Angular momentum of conservation
$ {{\text{m}}_{1}}{{\text{V}}_{1}}{{\text{r}}_{1}}\,=\,{{\text{m}}_{2}}{{\text{V}}_{2}}{{\text{r}}_{2}}\, $
Here, $ {{\text{m}}_{1}}\text{=}\,{{\text{m}}_{2}}=\text{m} $
Initial velocity $ {{\text{V}}_{1}}=\sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}} $ where $ {{\text{V}}_{e}} $ is escape velocity
$ {{\text{V}}_{2}}= $ Final velocity/maximum velocity
$ \text{m}\sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}}\,\text{R}\,\text{=}\,\text{m}\,{{\text{V}}_{2}}\,\text{d }...........\text{(1)} $
By energy conservation
(Kinetic energy $ + $ potential energy), initial $ \text{= } $ (KE $ + $ PE), final
$ \dfrac{1}{2}\text{m}{{\left( \sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}} \right)}^{2}}\text{+}\left( \dfrac{-\text{GMm}}{{{\text{R}}_{e}}} \right)=\dfrac{1}{2}\text{m}{{\text{V}}_{2}}^{2}\text{+}\left( \dfrac{-\text{GMm}}{\text{d}} \right).........(2)\, $
From equation $ \text{(1)} $ and $ (2) $
$ \text{D=5R} $
Hence, option (c) is correct answer.
Additional Information:
Once the escape velocity is reached the rocket moves in circular orbit with increasing radii and finally attains a hyperbola curve and goes into the space with infinity speed and never comes back.
Note :
Escape velocity is the speed required to escape gravity. To move out of the earth’s gravitational pull we need to reach escape velocity otherwise we will be pulled back.
(1) Angular momentum conservation $ \text{L= mVr} $
(2) Energy conservation: kinetic energy $ + $ potential energy = constant
Complete Step By Step Answer:
We know that,
Angular momentum of conservation
$ {{\text{m}}_{1}}{{\text{V}}_{1}}{{\text{r}}_{1}}\,=\,{{\text{m}}_{2}}{{\text{V}}_{2}}{{\text{r}}_{2}}\, $
Here, $ {{\text{m}}_{1}}\text{=}\,{{\text{m}}_{2}}=\text{m} $
Initial velocity $ {{\text{V}}_{1}}=\sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}} $ where $ {{\text{V}}_{e}} $ is escape velocity
$ {{\text{V}}_{2}}= $ Final velocity/maximum velocity
$ \text{m}\sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}}\,\text{R}\,\text{=}\,\text{m}\,{{\text{V}}_{2}}\,\text{d }...........\text{(1)} $
By energy conservation
(Kinetic energy $ + $ potential energy), initial $ \text{= } $ (KE $ + $ PE), final
$ \dfrac{1}{2}\text{m}{{\left( \sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}} \right)}^{2}}\text{+}\left( \dfrac{-\text{GMm}}{{{\text{R}}_{e}}} \right)=\dfrac{1}{2}\text{m}{{\text{V}}_{2}}^{2}\text{+}\left( \dfrac{-\text{GMm}}{\text{d}} \right).........(2)\, $
From equation $ \text{(1)} $ and $ (2) $
$ \text{D=5R} $
Hence, option (c) is correct answer.
Additional Information:
Once the escape velocity is reached the rocket moves in circular orbit with increasing radii and finally attains a hyperbola curve and goes into the space with infinity speed and never comes back.
Note :
Escape velocity is the speed required to escape gravity. To move out of the earth’s gravitational pull we need to reach escape velocity otherwise we will be pulled back.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

