
A satellite is projected with velocity $ \sqrt{\dfrac{5}{6}} $ times its escape speed from earth’s surface. The initial velocity of the satellite and parallel to the surface of earth. The maximum distance of the satellite from the centre of earth will be:
Answer
447.9k+ views
Hint :By using angular momentum $ \rho $ energy conservations formulas:
(1) Angular momentum conservation $ \text{L= mVr} $
(2) Energy conservation: kinetic energy $ + $ potential energy = constant
Complete Step By Step Answer:
We know that,
Angular momentum of conservation
$ {{\text{m}}_{1}}{{\text{V}}_{1}}{{\text{r}}_{1}}\,=\,{{\text{m}}_{2}}{{\text{V}}_{2}}{{\text{r}}_{2}}\, $
Here, $ {{\text{m}}_{1}}\text{=}\,{{\text{m}}_{2}}=\text{m} $
Initial velocity $ {{\text{V}}_{1}}=\sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}} $ where $ {{\text{V}}_{e}} $ is escape velocity
$ {{\text{V}}_{2}}= $ Final velocity/maximum velocity
$ \text{m}\sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}}\,\text{R}\,\text{=}\,\text{m}\,{{\text{V}}_{2}}\,\text{d }...........\text{(1)} $
By energy conservation
(Kinetic energy $ + $ potential energy), initial $ \text{= } $ (KE $ + $ PE), final
$ \dfrac{1}{2}\text{m}{{\left( \sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}} \right)}^{2}}\text{+}\left( \dfrac{-\text{GMm}}{{{\text{R}}_{e}}} \right)=\dfrac{1}{2}\text{m}{{\text{V}}_{2}}^{2}\text{+}\left( \dfrac{-\text{GMm}}{\text{d}} \right).........(2)\, $
From equation $ \text{(1)} $ and $ (2) $
$ \text{D=5R} $
Hence, option (c) is correct answer.
Additional Information:
Once the escape velocity is reached the rocket moves in circular orbit with increasing radii and finally attains a hyperbola curve and goes into the space with infinity speed and never comes back.
Note :
Escape velocity is the speed required to escape gravity. To move out of the earth’s gravitational pull we need to reach escape velocity otherwise we will be pulled back.
(1) Angular momentum conservation $ \text{L= mVr} $
(2) Energy conservation: kinetic energy $ + $ potential energy = constant
Complete Step By Step Answer:
We know that,
Angular momentum of conservation
$ {{\text{m}}_{1}}{{\text{V}}_{1}}{{\text{r}}_{1}}\,=\,{{\text{m}}_{2}}{{\text{V}}_{2}}{{\text{r}}_{2}}\, $
Here, $ {{\text{m}}_{1}}\text{=}\,{{\text{m}}_{2}}=\text{m} $
Initial velocity $ {{\text{V}}_{1}}=\sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}} $ where $ {{\text{V}}_{e}} $ is escape velocity
$ {{\text{V}}_{2}}= $ Final velocity/maximum velocity
$ \text{m}\sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}}\,\text{R}\,\text{=}\,\text{m}\,{{\text{V}}_{2}}\,\text{d }...........\text{(1)} $
By energy conservation
(Kinetic energy $ + $ potential energy), initial $ \text{= } $ (KE $ + $ PE), final
$ \dfrac{1}{2}\text{m}{{\left( \sqrt{\dfrac{5}{6}}\,{{\text{V}}_{e}} \right)}^{2}}\text{+}\left( \dfrac{-\text{GMm}}{{{\text{R}}_{e}}} \right)=\dfrac{1}{2}\text{m}{{\text{V}}_{2}}^{2}\text{+}\left( \dfrac{-\text{GMm}}{\text{d}} \right).........(2)\, $
From equation $ \text{(1)} $ and $ (2) $
$ \text{D=5R} $
Hence, option (c) is correct answer.
Additional Information:
Once the escape velocity is reached the rocket moves in circular orbit with increasing radii and finally attains a hyperbola curve and goes into the space with infinity speed and never comes back.
Note :
Escape velocity is the speed required to escape gravity. To move out of the earth’s gravitational pull we need to reach escape velocity otherwise we will be pulled back.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
