
A regular hexagon is inscribed in a circle of radius \[r\]. The perimeter of regular hexagon is
A. \[3r\]
B. \[6r\]
C. \[9r\]
D. \[12r\]
Answer
609k+ views
Hint: In this question, first draw the diagram it will give us a clear picture of what we have to find out. The perimeter of a Regular hexagon is just the sum of all 6 sides. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
The regular hexagon is inscribed in a circle of radius \[r\].
So, it is inside the circle. The diagram will be like this:
By joining opposite sides of a hexagon, it forms 6 central angles at centre each of which equals to \[ = \dfrac{{{{360}^\circ}}}{6} = {60^\circ}\].
And the six triangles are formed.
The two sides of each triangle are the radius of the circle and both are equal.
Therefore, the base angles of every triangle are equal. \[\left[ {\because {\text{central angle is 6}}{{\text{0}}^\circ}} \right]\]
So, base angle \[ = \dfrac{{{{120}^\circ}}}{2} = {60^\circ}\]
Therefore, the triangles are equilateral triangles.
So, here all sides are equal for an equilateral triangle.
Therefore, all sides of each triangle are equal to \[r\].
So, perimeter of regular hexagon \[ = 6 \times side = 6r\]
Hence, correct option is B. \[6r\]
Note: A regular hexagon has six sides and six angles. Lengths of all the sides and the measurement of all the angles are equal. The total number of diagonals in a regular hexagon is 9. The sum of all interior angles is equal to \[{720^\circ}\] which each interior angle measures \[{120^\circ}\].
Complete step-by-step answer:
The regular hexagon is inscribed in a circle of radius \[r\].
So, it is inside the circle. The diagram will be like this:
By joining opposite sides of a hexagon, it forms 6 central angles at centre each of which equals to \[ = \dfrac{{{{360}^\circ}}}{6} = {60^\circ}\].
And the six triangles are formed.
The two sides of each triangle are the radius of the circle and both are equal.
Therefore, the base angles of every triangle are equal. \[\left[ {\because {\text{central angle is 6}}{{\text{0}}^\circ}} \right]\]
So, base angle \[ = \dfrac{{{{120}^\circ}}}{2} = {60^\circ}\]
Therefore, the triangles are equilateral triangles.
So, here all sides are equal for an equilateral triangle.
Therefore, all sides of each triangle are equal to \[r\].
So, perimeter of regular hexagon \[ = 6 \times side = 6r\]
Hence, correct option is B. \[6r\]
Note: A regular hexagon has six sides and six angles. Lengths of all the sides and the measurement of all the angles are equal. The total number of diagonals in a regular hexagon is 9. The sum of all interior angles is equal to \[{720^\circ}\] which each interior angle measures \[{120^\circ}\].
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who among the following opened first school for girls class 9 social science CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

Which places in India experience sunrise first and class 9 social science CBSE

