
A region in the x-y plane is bounded by the curve $$y=\sqrt{\left( 25-x^{2}\right) }$$ and the line y=0. If the point (a,a+1) lies in the interior of the region, then
A) $a\in \left( -4,3\right) $
B) $a\in \left( -\infty ,-1\right) \cup \left( 3,\infty \right) $
C) $a\in \left( -1,3\right) $
D) None of these
Answer
607.5k+ views
Hint: In this question it is given that a region in the x-y plane is bounded by the curve $$y=\sqrt{\left( 25-x^{2}\right) }$$ and the line y=0. If the point (a,a+1) lies in the interior of the region, then we have to find the range for a.
The given equation $$y=\sqrt{\left( 25-x^{2}\right) }$$, which also can be written as, $x^{2}+y^{2}-5^{2}=0$, which is a equation of a circle.
So to find the solution we have to know that if any point (p,q) lies inside the circle $x^{2}+y^{2}-r^{2}=0$ then we can write, $p^{2}+q^{2}-r^{2}<0$ …………….(1).
So from here we get one condition of a and also the region is bounded by y = 0,i.e, from the region y > 0 we will get another condition of a, and by intersecting we will get our required solution.
Complete step-by-step solution:
Since it is given that point (a,a+1) lies inside the circle.
So by (1) we can write,
$$p^{2}+q^{2}-r^{2}<0$$
$$\Rightarrow a^{2}+\left( a+1\right)^{2} -5^{2}<0$$
$$\Rightarrow a^{2}+\left( a^{2}+2a+1\right) -25<0$$
$$\Rightarrow 2a^{2}+2a-24<0$$
$$\Rightarrow 2\left( a^{2}+a-12\right) <0$$
$$\Rightarrow \left( a^{2}+a-12\right) <0$$ [dividing both side by 2]
Now by middle term factorisation,
$$\Rightarrow a^{2}+4a-3a-12<0$$
$$\Rightarrow a\left( a+4\right) -3\left( a+4\right) <0$$
Now by taking (a+4) common, we can write,
$$\Rightarrow \left( a-3\right) \left( a+4\right) <0$$........(2)
Whenever multiplication of two terms less than zero, i.e ab<0, then
Either a < 0 and b > 0,
Or, a > 0 and b < 0,
So by this we can write (2) as,
Either, (a-3) < 0 and (a+4) > 0
Which implies, a < 3 and a > -4.
So the range of ‘a’ is -4 < a <3.
Also this can be written as $$a\in \left( -4,3\right) $$
Or, (a-3) > 0 and (a+4) < 0
Which implies, a > 3 and a < -4
So there is no common region by this above condition.
So have got one condition of a i.e, $$a\in \left( -4,3\right) $$
Now another condition is that the region is also bounded by y=0.
So the region is y > 0
Which gives (a+1) > 0 , [since we are finding conditions for ‘a’, where the coordinate is (a,a+1) , i.e y = a+1]
Which implies a > -1.
So another condition is $a\in \left( -1,\infty \right) $
So we get $$a\in \left( -4,3\right) \cap \left( -1,\infty \right) $$
$$\therefore a\in \left( -1,3\right) $$.
Which is our required solution.
Hence the correct option is option C.
Note: To solve this type of question you should keep in mind that, choose proper conditions according to the position of a point.
And also while solving any inequation always remember that whenever multiplication of two terms less than zero, i.e ab < 0, then either a < 0 and b > 0, Or, a > 0 and b < 0 and for sets or intervals the meaning of “and” is intersection.
The given equation $$y=\sqrt{\left( 25-x^{2}\right) }$$, which also can be written as, $x^{2}+y^{2}-5^{2}=0$, which is a equation of a circle.
So to find the solution we have to know that if any point (p,q) lies inside the circle $x^{2}+y^{2}-r^{2}=0$ then we can write, $p^{2}+q^{2}-r^{2}<0$ …………….(1).
So from here we get one condition of a and also the region is bounded by y = 0,i.e, from the region y > 0 we will get another condition of a, and by intersecting we will get our required solution.
Complete step-by-step solution:
Since it is given that point (a,a+1) lies inside the circle.
So by (1) we can write,
$$p^{2}+q^{2}-r^{2}<0$$
$$\Rightarrow a^{2}+\left( a+1\right)^{2} -5^{2}<0$$
$$\Rightarrow a^{2}+\left( a^{2}+2a+1\right) -25<0$$
$$\Rightarrow 2a^{2}+2a-24<0$$
$$\Rightarrow 2\left( a^{2}+a-12\right) <0$$
$$\Rightarrow \left( a^{2}+a-12\right) <0$$ [dividing both side by 2]
Now by middle term factorisation,
$$\Rightarrow a^{2}+4a-3a-12<0$$
$$\Rightarrow a\left( a+4\right) -3\left( a+4\right) <0$$
Now by taking (a+4) common, we can write,
$$\Rightarrow \left( a-3\right) \left( a+4\right) <0$$........(2)
Whenever multiplication of two terms less than zero, i.e ab<0, then
Either a < 0 and b > 0,
Or, a > 0 and b < 0,
So by this we can write (2) as,
Either, (a-3) < 0 and (a+4) > 0
Which implies, a < 3 and a > -4.
So the range of ‘a’ is -4 < a <3.
Also this can be written as $$a\in \left( -4,3\right) $$
Or, (a-3) > 0 and (a+4) < 0
Which implies, a > 3 and a < -4
So there is no common region by this above condition.
So have got one condition of a i.e, $$a\in \left( -4,3\right) $$
Now another condition is that the region is also bounded by y=0.
So the region is y > 0
Which gives (a+1) > 0 , [since we are finding conditions for ‘a’, where the coordinate is (a,a+1) , i.e y = a+1]
Which implies a > -1.
So another condition is $a\in \left( -1,\infty \right) $
So we get $$a\in \left( -4,3\right) \cap \left( -1,\infty \right) $$
$$\therefore a\in \left( -1,3\right) $$.
Which is our required solution.
Hence the correct option is option C.
Note: To solve this type of question you should keep in mind that, choose proper conditions according to the position of a point.
And also while solving any inequation always remember that whenever multiplication of two terms less than zero, i.e ab < 0, then either a < 0 and b > 0, Or, a > 0 and b < 0 and for sets or intervals the meaning of “and” is intersection.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

