
A ray of light strikes a glass slab 5 cm thick, making an angle of incidence equal to 30°. Construct the ray diagram showing the emergent ray and the refracted ray through the glass block. The refractive index of glass is 1.5. Also, measure the lateral displacement of the ray. Take $\sin{19.5°=\ \dfrac {1}{3}}$.
Answer
513k+ views
Hint: Use Snell’s Law to find angle of refracted ray. Then by substituting the values in the formula for lateral displacement calculate lateral displacement. And finally using all these data draw the ray diagram showing emergent ray and refracted ray through the glass block.
Formula used:
$\mu = \dfrac{\sin{i}}{\sin{r}}$
$Lateral\ Displacement= t \times \dfrac {\sin {(i-r)} }{\cos {r} }$
Complete step-by-step answer:
Given: Thickness (t)= 5cm
Refractive Index ($\mu$) =1.5
Angle of incidence= 30°
We know Snell’s Law is given as,
$\mu = \dfrac{\sin{i}}{\sin{r}}$
Rearranging the above equation we get,
$sinr = \dfrac{\sin{i}}{\mu}$
Now by substituting the given values we get,
$sinr = \dfrac{\sin{30°}}{1.5}$
$sinr=\dfrac {\dfrac {1}{2} }{1.5}$
$\therefore sinr=\dfrac {1}{3}$
$\therefore \ r=\arcsin {\dfrac {1}{3} }$
$\therefore \ r= 19.5°$
Now to calculate lateral displacement, the formula is given by,
$Lateral\ Displacement= t \times \dfrac {\sin {(i-r)} }{\cos {r} }$
Substituting the values we get,
$\therefore Lateral\ Displacement= 5\times \dfrac {\sin {(30°-19.5°)} }{\cos {19.5°} }$
$\therefore Lateral\ Displacement= 5\times \dfrac {\sin {(10.5°)} }{\cos {19.5°} }$
$\therefore Lateral\ Displacement=0.97$
Hence, the lateral displacement of the ray is 0.97cm.
Note: There’s an alternate formula to calculate lateral displacement you can use that as well. The alternate formula is given by,
$Lateral\ Displacement= t \times i\left( 1 - \dfrac {r}{i} \right)$
Formula used:
$\mu = \dfrac{\sin{i}}{\sin{r}}$
$Lateral\ Displacement= t \times \dfrac {\sin {(i-r)} }{\cos {r} }$
Complete step-by-step answer:
Given: Thickness (t)= 5cm
Refractive Index ($\mu$) =1.5
Angle of incidence= 30°
We know Snell’s Law is given as,
$\mu = \dfrac{\sin{i}}{\sin{r}}$
Rearranging the above equation we get,
$sinr = \dfrac{\sin{i}}{\mu}$
Now by substituting the given values we get,
$sinr = \dfrac{\sin{30°}}{1.5}$
$sinr=\dfrac {\dfrac {1}{2} }{1.5}$
$\therefore sinr=\dfrac {1}{3}$
$\therefore \ r=\arcsin {\dfrac {1}{3} }$
$\therefore \ r= 19.5°$
Now to calculate lateral displacement, the formula is given by,
$Lateral\ Displacement= t \times \dfrac {\sin {(i-r)} }{\cos {r} }$
Substituting the values we get,
$\therefore Lateral\ Displacement= 5\times \dfrac {\sin {(30°-19.5°)} }{\cos {19.5°} }$
$\therefore Lateral\ Displacement= 5\times \dfrac {\sin {(10.5°)} }{\cos {19.5°} }$
$\therefore Lateral\ Displacement=0.97$
Hence, the lateral displacement of the ray is 0.97cm.

Note: There’s an alternate formula to calculate lateral displacement you can use that as well. The alternate formula is given by,
$Lateral\ Displacement= t \times i\left( 1 - \dfrac {r}{i} \right)$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
