
A ray of light strikes a glass slab 5 cm thick, making an angle of incidence equal to 30°. Construct the ray diagram showing the emergent ray and the refracted ray through the glass block. The refractive index of glass is 1.5. Also, measure the lateral displacement of the ray. Take $\sin{19.5°=\ \dfrac {1}{3}}$.
Answer
582.6k+ views
Hint: Use Snell’s Law to find angle of refracted ray. Then by substituting the values in the formula for lateral displacement calculate lateral displacement. And finally using all these data draw the ray diagram showing emergent ray and refracted ray through the glass block.
Formula used:
$\mu = \dfrac{\sin{i}}{\sin{r}}$
$Lateral\ Displacement= t \times \dfrac {\sin {(i-r)} }{\cos {r} }$
Complete step-by-step answer:
Given: Thickness (t)= 5cm
Refractive Index ($\mu$) =1.5
Angle of incidence= 30°
We know Snell’s Law is given as,
$\mu = \dfrac{\sin{i}}{\sin{r}}$
Rearranging the above equation we get,
$sinr = \dfrac{\sin{i}}{\mu}$
Now by substituting the given values we get,
$sinr = \dfrac{\sin{30°}}{1.5}$
$sinr=\dfrac {\dfrac {1}{2} }{1.5}$
$\therefore sinr=\dfrac {1}{3}$
$\therefore \ r=\arcsin {\dfrac {1}{3} }$
$\therefore \ r= 19.5°$
Now to calculate lateral displacement, the formula is given by,
$Lateral\ Displacement= t \times \dfrac {\sin {(i-r)} }{\cos {r} }$
Substituting the values we get,
$\therefore Lateral\ Displacement= 5\times \dfrac {\sin {(30°-19.5°)} }{\cos {19.5°} }$
$\therefore Lateral\ Displacement= 5\times \dfrac {\sin {(10.5°)} }{\cos {19.5°} }$
$\therefore Lateral\ Displacement=0.97$
Hence, the lateral displacement of the ray is 0.97cm.
Note: There’s an alternate formula to calculate lateral displacement you can use that as well. The alternate formula is given by,
$Lateral\ Displacement= t \times i\left( 1 - \dfrac {r}{i} \right)$
Formula used:
$\mu = \dfrac{\sin{i}}{\sin{r}}$
$Lateral\ Displacement= t \times \dfrac {\sin {(i-r)} }{\cos {r} }$
Complete step-by-step answer:
Given: Thickness (t)= 5cm
Refractive Index ($\mu$) =1.5
Angle of incidence= 30°
We know Snell’s Law is given as,
$\mu = \dfrac{\sin{i}}{\sin{r}}$
Rearranging the above equation we get,
$sinr = \dfrac{\sin{i}}{\mu}$
Now by substituting the given values we get,
$sinr = \dfrac{\sin{30°}}{1.5}$
$sinr=\dfrac {\dfrac {1}{2} }{1.5}$
$\therefore sinr=\dfrac {1}{3}$
$\therefore \ r=\arcsin {\dfrac {1}{3} }$
$\therefore \ r= 19.5°$
Now to calculate lateral displacement, the formula is given by,
$Lateral\ Displacement= t \times \dfrac {\sin {(i-r)} }{\cos {r} }$
Substituting the values we get,
$\therefore Lateral\ Displacement= 5\times \dfrac {\sin {(30°-19.5°)} }{\cos {19.5°} }$
$\therefore Lateral\ Displacement= 5\times \dfrac {\sin {(10.5°)} }{\cos {19.5°} }$
$\therefore Lateral\ Displacement=0.97$
Hence, the lateral displacement of the ray is 0.97cm.
Note: There’s an alternate formula to calculate lateral displacement you can use that as well. The alternate formula is given by,
$Lateral\ Displacement= t \times i\left( 1 - \dfrac {r}{i} \right)$
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

