
A ray of light moving along the unit vector \[\left( { - i - 2j} \right)\] undergoes refraction at an interface of two media, which is the x-z plane. The refractive index for y > 0 is 2 while for y < 0, it is \[\sqrt 5 /2\]. The unit vector along which the refracted ray moves is:
A. \[\dfrac{{\left( { - 3i - 5j} \right)}}{{\sqrt {34} }}\]
B. \[\dfrac{{\left( { - 4i - 3j} \right)}}{5}\]
C. \[\dfrac{{\left( { - 3i - 4j} \right)}}{5}\]
D. None of these
Answer
563.7k+ views
Hint: The above problem can be resolved using the fundamentals of the refractive index, along with the fundamentals of the angle of incidence and angle of refraction when a ray of light strikes on a plane reflected surface, such that angles of incidence and refraction are formed. Moreover, these angles are related to another component that determines the bending of light rays in a medium; this component is known as the refractive index.
Complete step by step answer:
The vector representation of the incident ray is, \[\vec r = \left( { - i - 2j} \right)\].
The refractive index for y > 0 is, \[{\mu _1} = 2\].
The refractive index for y < 0 is, \[{\mu _2} = \sqrt 5 /2\]
Let r be the refracted angle. Then, the value of r in the vector form is given as,
\[\vec r\left( { - j} \right) = \left| r \right|\cos i\]
Here, i is the incident angle.
Solve by substituting the values as,
\[\begin{array}{l}
\vec r\left( { - j} \right) = \left| r \right|\cos i\\
\left( { - i - 2j} \right)\left( { - j} \right) = \left( {\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} } \right)\cos i\\
\left( { - i - 2j} \right)\left( { - j} \right) = \sqrt 5 \cos i
\end{array}\]\[\]
Taking the values from the above equation as,
\[\begin{array}{l}
\left( { - i - 2j} \right)\left( { - j} \right) = \sqrt 5 \cos i\\
\cos i = \dfrac{2}{{\sqrt 5 }}\\
\sin i = \dfrac{1}{{\sqrt 5 }}
\end{array}\]
Now, apply the Snell’s law as,
\[\begin{array}{l}
{\mu _1}\sin i = {\mu _2}\sin r\\
2 \times \left( {\dfrac{1}{{\sqrt 5 }}} \right) = \dfrac{{\sqrt 5 }}{2}\sin r\\
\sin r = \dfrac{4}{5}
\end{array}\]
So, the value of cosine of refraction angle is,
\[\cos r = \dfrac{3}{5}\]
The vector form of the refraction angle is,
\[\begin{array}{l}
\vec r\left( { - j} \right) = \left| r \right|\cos r\\
\left( { - i - yj} \right)\left( { - j} \right) = \left( {\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - y} \right)}^2}} } \right)\cos r\\
\left( { - i - yj} \right)\left( { - j} \right) = \sqrt {1 + {y^2}} \cos r
\end{array}\]
Here, y is any constant. \[\]
Further solving as,
\[\begin{array}{l}
\left( { - i - yj} \right)\left( { - j} \right) = \sqrt {1 + {y^2}} \cos r\\
\left( { - i - yj} \right)\left( { - j} \right) = \sqrt {1 + {y^2}} \times \left( {\dfrac{3}{5}} \right)\\
5y = 3\sqrt {1 + {y^2}} \\
y = \dfrac{3}{4}
\end{array}\] \[\]
The unit vector along which the refracted ray is given as,
\[\begin{array}{l}
{{\vec r}_c} = \dfrac{{\left( { - \hat i - y\hat j} \right)}}{{\left| {{r_c}} \right|}}\\
{{\vec r}_c} = \dfrac{{\left( { - \hat i - y\hat j} \right)}}{{\sqrt {1 + {y^2}} }}\\
{{\vec r}_c} = \dfrac{{\left( { - \hat i - \left( {\dfrac{3}{4}} \right)\hat j} \right)}}{{\sqrt {1 + {{\left( {\dfrac{3}{4}} \right)}^2}} }}\\
{{\vec r}_c} = \dfrac{{ - 4\hat i - 3\hat j}}{5}
\end{array}\]
Therefore, the unit vector along which the refracted ray is \[\dfrac{{ - 4\hat i - 3\hat j}}{5}\] and option (B) is correct.
Note:To solve the given problem, one needs to understand the concept behind the refraction and reflection. When the light ray is being refracted through the surface, the angle so formed is called the angle of refraction and similarly, the rays where reflection of light rays takes place, the angle corresponding to it is known as the angle of incidence.
Complete step by step answer:
The vector representation of the incident ray is, \[\vec r = \left( { - i - 2j} \right)\].
The refractive index for y > 0 is, \[{\mu _1} = 2\].
The refractive index for y < 0 is, \[{\mu _2} = \sqrt 5 /2\]
Let r be the refracted angle. Then, the value of r in the vector form is given as,
\[\vec r\left( { - j} \right) = \left| r \right|\cos i\]
Here, i is the incident angle.
Solve by substituting the values as,
\[\begin{array}{l}
\vec r\left( { - j} \right) = \left| r \right|\cos i\\
\left( { - i - 2j} \right)\left( { - j} \right) = \left( {\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} } \right)\cos i\\
\left( { - i - 2j} \right)\left( { - j} \right) = \sqrt 5 \cos i
\end{array}\]\[\]
Taking the values from the above equation as,
\[\begin{array}{l}
\left( { - i - 2j} \right)\left( { - j} \right) = \sqrt 5 \cos i\\
\cos i = \dfrac{2}{{\sqrt 5 }}\\
\sin i = \dfrac{1}{{\sqrt 5 }}
\end{array}\]
Now, apply the Snell’s law as,
\[\begin{array}{l}
{\mu _1}\sin i = {\mu _2}\sin r\\
2 \times \left( {\dfrac{1}{{\sqrt 5 }}} \right) = \dfrac{{\sqrt 5 }}{2}\sin r\\
\sin r = \dfrac{4}{5}
\end{array}\]
So, the value of cosine of refraction angle is,
\[\cos r = \dfrac{3}{5}\]
The vector form of the refraction angle is,
\[\begin{array}{l}
\vec r\left( { - j} \right) = \left| r \right|\cos r\\
\left( { - i - yj} \right)\left( { - j} \right) = \left( {\sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - y} \right)}^2}} } \right)\cos r\\
\left( { - i - yj} \right)\left( { - j} \right) = \sqrt {1 + {y^2}} \cos r
\end{array}\]
Here, y is any constant. \[\]
Further solving as,
\[\begin{array}{l}
\left( { - i - yj} \right)\left( { - j} \right) = \sqrt {1 + {y^2}} \cos r\\
\left( { - i - yj} \right)\left( { - j} \right) = \sqrt {1 + {y^2}} \times \left( {\dfrac{3}{5}} \right)\\
5y = 3\sqrt {1 + {y^2}} \\
y = \dfrac{3}{4}
\end{array}\] \[\]
The unit vector along which the refracted ray is given as,
\[\begin{array}{l}
{{\vec r}_c} = \dfrac{{\left( { - \hat i - y\hat j} \right)}}{{\left| {{r_c}} \right|}}\\
{{\vec r}_c} = \dfrac{{\left( { - \hat i - y\hat j} \right)}}{{\sqrt {1 + {y^2}} }}\\
{{\vec r}_c} = \dfrac{{\left( { - \hat i - \left( {\dfrac{3}{4}} \right)\hat j} \right)}}{{\sqrt {1 + {{\left( {\dfrac{3}{4}} \right)}^2}} }}\\
{{\vec r}_c} = \dfrac{{ - 4\hat i - 3\hat j}}{5}
\end{array}\]
Therefore, the unit vector along which the refracted ray is \[\dfrac{{ - 4\hat i - 3\hat j}}{5}\] and option (B) is correct.
Note:To solve the given problem, one needs to understand the concept behind the refraction and reflection. When the light ray is being refracted through the surface, the angle so formed is called the angle of refraction and similarly, the rays where reflection of light rays takes place, the angle corresponding to it is known as the angle of incidence.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Trending doubts
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

Prove that a parallelogram circumscribing a circle-class-12-maths-CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

