
A ramp for unloading a moving truck has an angle of elevation of ${{30}^{\circ }}$ . If the top of the ramp is 0.9m above the ground level, then find the length of the ramp.
Answer
508.8k+ views
Hint: Draw a figure as per the given details in the question and apply trigonometric formulas. Trigonometric formulas to be used:
$\begin{align}
& \sin \theta =\dfrac{\text{Perpendicular}}{\text{hypotenuse}} \\
& \cos \theta =\dfrac{\text{Base}}{\text{hypotenuse}} \\
& \tan \theta =\dfrac{\text{Perpendicular}}{\text{Base}} \\
\end{align}$
Complete step-by-step answer:
The angle of elevation is the angle between the horizontal line of sight up to and the line sight up to an object. For example if you are standing on the ground looking up at the top of a mountain you could measure the angle of elevation.
Let the length of ramp = l m
According to the formula of $\sin \theta $ -
$\sin \theta =\dfrac{\text{Perpendicular}}{\text{hypotenuse}}$ .
For a right triangle –
For $\theta -$ BC= Base
AB= perpendicular
AC= Hypotenuse
For $\alpha $ - AB= Base
BC = Perpendicular
AC= hypotenuse
Here:
For angle C, putting the value of its perpendicular and base in the formula for sin C, we will get-
$\begin{align}
& \sin {{30}^{\circ }}=\dfrac{\text{Perpendicular}}{\text{hypotenuse}}=\dfrac{0.9}{l} \\
& \Rightarrow \dfrac{1}{2}=\dfrac{0.9}{l} \\
\end{align}$
Multiply both sides of equation by 2, we will get
$\begin{align}
& \Rightarrow l=2\times 0.9 \\
& \Rightarrow l=1.8m \\
\end{align}$
Hence, the required length of ramp $1.8m$.
Note: Another method –
We know $\tan \theta =\dfrac{\text{Perpendicular}}{\text{Base}}$ .
So, $\tan {{30}^{\circ }}=\dfrac{0.9}{x}$
We know $\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}$
So, $\dfrac{1}{\sqrt{3}}=\dfrac{0.9}{x}$
$\Rightarrow x=0.9\sqrt{3}$
Next, we know –
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( \text{perpendicular} \right)}^{2}}+{{\left( \text{base} \right)}^{2}}$
In this triangle –
$\begin{align}
& \Rightarrow {{\left( \text{l} \right)}^{2}}={{\left( \text{0}\text{.9} \right)}^{2}}+{{\left( \text{x} \right)}^{2}} \\
& \Rightarrow {{l}^{2}}=0.81+\left( 0.9\sqrt{3} \right) \\
& \Rightarrow {{l}^{2}}=0.81+2.43 \\
& \Rightarrow {{l}^{2}}=3.24 \\
\end{align}$ (above calculated $x=0.9\sqrt{3}$ )
Taking positive square root both sides –
$\begin{align}
& \Rightarrow l=\sqrt{3.24} \\
& \Rightarrow l=1.8m \\
\end{align}$
$\begin{align}
& \sin \theta =\dfrac{\text{Perpendicular}}{\text{hypotenuse}} \\
& \cos \theta =\dfrac{\text{Base}}{\text{hypotenuse}} \\
& \tan \theta =\dfrac{\text{Perpendicular}}{\text{Base}} \\
\end{align}$
Complete step-by-step answer:
The angle of elevation is the angle between the horizontal line of sight up to and the line sight up to an object. For example if you are standing on the ground looking up at the top of a mountain you could measure the angle of elevation.

Let the length of ramp = l m
According to the formula of $\sin \theta $ -
$\sin \theta =\dfrac{\text{Perpendicular}}{\text{hypotenuse}}$ .
For a right triangle –

For $\theta -$ BC= Base
AB= perpendicular
AC= Hypotenuse
For $\alpha $ - AB= Base
BC = Perpendicular
AC= hypotenuse
Here:
For angle C, putting the value of its perpendicular and base in the formula for sin C, we will get-
$\begin{align}
& \sin {{30}^{\circ }}=\dfrac{\text{Perpendicular}}{\text{hypotenuse}}=\dfrac{0.9}{l} \\
& \Rightarrow \dfrac{1}{2}=\dfrac{0.9}{l} \\
\end{align}$
Multiply both sides of equation by 2, we will get
$\begin{align}
& \Rightarrow l=2\times 0.9 \\
& \Rightarrow l=1.8m \\
\end{align}$
Hence, the required length of ramp $1.8m$.
Note: Another method –

We know $\tan \theta =\dfrac{\text{Perpendicular}}{\text{Base}}$ .
So, $\tan {{30}^{\circ }}=\dfrac{0.9}{x}$
We know $\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}$
So, $\dfrac{1}{\sqrt{3}}=\dfrac{0.9}{x}$
$\Rightarrow x=0.9\sqrt{3}$
Next, we know –
${{\left( \text{hypotenuse} \right)}^{2}}={{\left( \text{perpendicular} \right)}^{2}}+{{\left( \text{base} \right)}^{2}}$
In this triangle –
$\begin{align}
& \Rightarrow {{\left( \text{l} \right)}^{2}}={{\left( \text{0}\text{.9} \right)}^{2}}+{{\left( \text{x} \right)}^{2}} \\
& \Rightarrow {{l}^{2}}=0.81+\left( 0.9\sqrt{3} \right) \\
& \Rightarrow {{l}^{2}}=0.81+2.43 \\
& \Rightarrow {{l}^{2}}=3.24 \\
\end{align}$ (above calculated $x=0.9\sqrt{3}$ )
Taking positive square root both sides –
$\begin{align}
& \Rightarrow l=\sqrt{3.24} \\
& \Rightarrow l=1.8m \\
\end{align}$
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
