
A rack has 5 different pairs of shoes. The number of ways in which 4 shoes can be chosen from it. so that there will be no complete pair, is
A 1920
B 200
C 110
D 80
Answer
587.7k+ views
Hint: In this question we use the theory of permutation and combination. So, before solving this question you need to first recall the basics of this chapter. For example, if we need to select two racks out of four racks. in this case, this can be done in${}^{\text{4}}{{\text{C}}_2}$ =6 ways.
Formula use- ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Complete step-by-step answer:
Given that a rack has 5 different pairs of shoes
We have to find the number of ways in which 4 shoes can be chosen from it, so that there will be no complete pair. So, we have to use "combinations"
The formula for combination is given as:
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
where n! means the factorial of n
First of all, we have to choose 4 racks out of 5 which can be chosen by:
${}^5{{\text{C}}_4}{\text{ = }}\dfrac{{5!}}{{{\text{[4}}!{\text{(5 - 4)}}!{\text{]}}}}$
= $\dfrac{{5 \times 4 \times 3 \times 2 \times 1}}{{4 \times 3 \times 2 \times 1}}$
= $5$
Now for every pair, on selecting 1 shoe,
this can be done in ${\left( {{}^{\text{2}}{{\text{C}}_{\text{1}}}} \right)^{\text{4}}}$ways.
Suppose we pick left shoes only.
There will be 5 variants to pick 4 from 5. Now we add the possibility of picking the right shoe.
Then from each rack we have to choose 1 shoe,
So out of 2 we have to choose one which can be done as follows
= ${}^{\text{2}}{{\text{C}}_{\text{1}}}$$ \times $${}^{\text{2}}{{\text{C}}_{\text{1}}}$$ \times $${}^{\text{2}}{{\text{C}}_{\text{1}}}$$ \times $${}^{\text{2}}{{\text{C}}_{\text{1}}}$
= 16
Total number of ways of choosing are = 16 $ \times $5 = 80 ways
Therefore, the number of ways in which 4 shoes can be chosen from it. so that there will be no complete pair, is 80.
Thus, option (D) is the correct answer.
Note: We need to remember this formula for selecting r things out of n.
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
where n! means the factorial of n.
for example, $3!{\text{ = 3}} \times {\text{2}} \times 1$
Formula use- ${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
Complete step-by-step answer:
Given that a rack has 5 different pairs of shoes
We have to find the number of ways in which 4 shoes can be chosen from it, so that there will be no complete pair. So, we have to use "combinations"
The formula for combination is given as:
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n}}!}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
where n! means the factorial of n
First of all, we have to choose 4 racks out of 5 which can be chosen by:
${}^5{{\text{C}}_4}{\text{ = }}\dfrac{{5!}}{{{\text{[4}}!{\text{(5 - 4)}}!{\text{]}}}}$
= $\dfrac{{5 \times 4 \times 3 \times 2 \times 1}}{{4 \times 3 \times 2 \times 1}}$
= $5$
Now for every pair, on selecting 1 shoe,
this can be done in ${\left( {{}^{\text{2}}{{\text{C}}_{\text{1}}}} \right)^{\text{4}}}$ways.
Suppose we pick left shoes only.
There will be 5 variants to pick 4 from 5. Now we add the possibility of picking the right shoe.
Then from each rack we have to choose 1 shoe,
So out of 2 we have to choose one which can be done as follows
= ${}^{\text{2}}{{\text{C}}_{\text{1}}}$$ \times $${}^{\text{2}}{{\text{C}}_{\text{1}}}$$ \times $${}^{\text{2}}{{\text{C}}_{\text{1}}}$$ \times $${}^{\text{2}}{{\text{C}}_{\text{1}}}$
= 16
Total number of ways of choosing are = 16 $ \times $5 = 80 ways
Therefore, the number of ways in which 4 shoes can be chosen from it. so that there will be no complete pair, is 80.
Thus, option (D) is the correct answer.
Note: We need to remember this formula for selecting r things out of n.
${}^{\text{n}}{{\text{C}}_{\text{r}}}{\text{ = }}\dfrac{{{\text{n!}}}}{{{\text{[r}}!{\text{(n - r)}}!{\text{]}}}}$
where n! means the factorial of n.
for example, $3!{\text{ = 3}} \times {\text{2}} \times 1$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

