Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

A quadrilateral is inscribed in a parabola ${{y}^{2}}=4ax$ and three of its sides pass through fixed points on the axis. Show that the fourth side also passes through a fixed point on the axis of the parabola.

Answer
VerifiedVerified
534.3k+ views

Hint: Draw figure as mentioned. Take quadrilateral as ABCD. Consider the coordinate of A as $\left( at_{1}^{2},2{{t}_{1}} \right)$ . Fixed slope of AB, thus get the equation of line AB. Take A, B, C, D as ${{t}_{1}},{{t}_{2}},{{t}_{3}},{{t}_{4}}$ . From the equation of line, you get ${{t}_{1}},{{t}_{2}}$ . similarly find ${{t}_{2}},{{t}_{3}},{{t}_{4}}$ and multiply them together to find ${{t}_{1}}-{{t}_{4}}$ as constant.


Complete step by step solution:

We have been given this equation of parabola as ${{y}^{2}}=4ax$ . It is said that a quadrilateral is inscribed in this parabola. The 3 sides of the quadrilateral passes through fixed points in the axis. We know that a quadrilateral has 4 sides. As 3 sides are fixed, we need to show that the 4th side of the quadrilateral is also fixed on the axis of the parabola. Let us take the quadrilateral ABCD.

seo images

Point A and B touches the parabola ${{y}^{2}}=4ax$. Let us take the coordinates ${{t}_{1}},{{t}_{2}},{{t}_{3}}$ and ${{t}_{4}}$ for A,B, C and D.

Put $x=at_{1}^{2}$ in the equation of parabola. ${{y}^{2}}=4ax$

$\Rightarrow {{y}^{2}}=4a\left( at_{1}^{2} \right)={{y}^{2}}=4{{a}^{2}}t_{1}^{2}$ .

Take square of both sides,

$y=2a{{t}_{1}}$ . Thus, the coordinates of A are $\left( x,y \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)$ .

Similarly, the coordinates of B become $\left( at_{2}^{2},2a{{t}_{2}} \right)$ .

seo images

Now let us find the slope of line AB. We know the formula for finding slope,

$\text{slope=}\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ here, $\left( {{x}_{1}},{{y}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right)=\left( at_{2}^{2},2a{{t}_{2}} \right)$

$\therefore $ slope of AB $=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{at_{2}^{2}-at_{1}^{2}}=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( t_{2}^{2}-t_{1}^{2} \right)}$ .

We know that $\left( t_{2}^{2}-t_{1}^{2} \right)=\left( {{t}_{2}}+{{t}_{1}} \right)\left( {{t}_{2}}-{{t}_{1}} \right)$ i.e. similar to ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ .

$\therefore $ Slope of AB $=\dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)}$ .

Cancel out $a\left( {{t}_{2}}-{{t}_{1}} \right)$ from the numerator & denominator.

$\therefore $ Slope of AB $=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}=m$

Thus, we can find the equation of line AB by using the formula, $y-{{y}_{1}}=m\left( x-{{x}_{1}} \right)$ .

Put $\left( {{x}_{1}},{{y}_{1}} \right)=\left( at_{1}^{2},2a{{t}_{1}} \right)$ and $m=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}$ .

\[y-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-at_{1}^{2} \right)\]

Now let us simplify the above expression,

$\begin{align}

  & \left( {{t}_{1}}+{{t}_{2}} \right)\left[ y-2a{{t}_{1}} \right]=2\left( x-at_{1}^{2} \right) \\

 & y\left( {{t}_{1}}+{{t}_{2}} \right)-2a{{t}_{1}}\left( {{t}_{1}}+{{t}_{2}} \right)=2x-2at_{1}^{2} \\

 & y\left( {{t}_{1}}+{{t}_{2}} \right)-2at_{1}^{2}-2a{{t}_{1}}{{t}_{2}}=2x-2at_{1}^{2} \\

\end{align}$

Cancel out $2at_{1}^{2}$ from LHS & RHS

$y\left( {{t}_{1}}+{{t}_{2}} \right)-2a{{t}_{1}}{{t}_{2}}=2x$

Now this line passes through a fixed point on the axis. So, we can put y = 0.

Putting the value, we get

$\begin{align}

  & 0\times \left( {{t}_{1}}+{{t}_{2}} \right)-2a{{t}_{1}}{{t}_{2}}=2x \\

 & \Rightarrow x=-a{{t}_{1}}{{t}_{2}} \\

\end{align}$

Let us take $-a{{t}_{1}}{{t}_{2}}=x={{k}_{1}}$ .

$\therefore {{k}_{1}}=-a{{t}_{1}}{{t}_{2}}$ , ${{t}_{1}}{{t}_{2}}=-\dfrac{{{k}_{1}}}{a}$

From equation of chord AB, we got ${{t}_{1}}{{t}_{2}}=-\dfrac{{{k}_{1}}}{a}$ ……………… (2)

Similarly for BC, we get ${{t}_{2}}{{t}_{3}}=-\dfrac{{{k}_{2}}}{a}$ …………….(3)

Similarly, for CD, we get ${{t}_{3}}{{t}_{4}}=-\dfrac{{{k}_{3}}}{a}$ ………………… (4)

We get this because it’s told that 3 sides through fixed point and A, B, C, D are taken as ${{t}_{1}},{{t}_{2}},{{t}_{3}},{{t}_{4}}$ .

Now let us multiply (2), (3) and (4), we get,

$\left( {{t}_{1}}{{t}_{2}} \right)\times \left( {{t}_{2}}{{t}_{3}} \right)\times \left( {{t}_{3}}{{t}_{4}} \right)=\left( -\dfrac{{{k}_{1}}}{a} \right)\left( -\dfrac{{{k}_{2}}}{a} \right)\left( -\dfrac{{{k}_{3}}}{a} \right)$

Let us simplify the above expression.

$\begin{align}

  & {{t}_{1}}t_{2}^{2}t_{3}^{2}{{t}_{4}}=-\dfrac{{{k}_{1}}{{k}_{2}}{{k}_{3}}}{{{a}^{3}}} \\

 & \Rightarrow {{t}_{1}}{{t}_{4}}\left( t_{2}^{2}t_{3}^{2} \right)=-\dfrac{{{k}_{1}}{{k}_{2}}{{k}_{3}}}{{{a}^{3}}} \\

\end{align}$

Put \[{{t}_{2}}{{t}_{3}}=-\dfrac{{{k}_{2}}}{a}\]

\[\begin{align}

  & {{t}_{1}}{{t}_{4}}{{\left( {{t}_{2}}{{t}_{3}} \right)}^{2}}=-\dfrac{{{k}_{1}}{{k}_{2}}{{k}_{3}}}{{{a}^{3}}} \\

 & \Rightarrow {{t}_{1}}{{t}_{4}}{{\left( -\dfrac{{{k}_{2}}}{a} \right)}^{2}}=-\dfrac{{{k}_{1}}{{k}_{2}}{{k}_{3}}}{{{a}^{3}}} \\

 & \Rightarrow {{t}_{1}}{{t}_{4}}\left( \dfrac{k_{2}^{2}}{{{a}^{2}}} \right)=-\dfrac{{{k}_{1}}{{k}_{2}}{{k}_{3}}}{{{a}^{3}}} \\

\end{align}\]

Cancel out $\dfrac{{{k}_{2}}}{{{a}^{2}}}$ from both sides.

\[{{t}_{1}}{{t}_{4}}\times {{k}_{2}}=-\dfrac{{{k}_{1}}{{k}_{3}}}{a}\]

$\therefore {{t}_{1}}{{t}_{4}}=-\dfrac{{{k}_{1}}{{k}_{3}}}{a{{k}_{2}}}=\text{constant}$

Hence, from this we can say that the 4th side of the quadrilateral also passes through a fixed point on the axis of parabola.


Note: Parabola is not one of the easy concepts. It is important that you consider the 6 sides of the quadrilateral as ${{t}_{1}},{{t}_{2}},{{t}_{3}},{{t}_{4}}$ . Thus, as 3 points are fixed which are ${{t}_{1}}{{t}_{2}},{{t}_{2}}{{t}_{3}}$ and ${{t}_{3}}{{t}_{4}}$ , you need to find this ${{t}_{3}}{{t}_{4}}$ is constant and hence fixed.