Answer
Verified
438.6k+ views
Hint: Mechanical advantage is the ratio of load attached to the effort applied on the pulley. We can design a certain number of systems which provide us an advantage that we can lift an object by applying a force, lesser than the weight of the object itself. Hence mechanical advantage is the measure of how much one has to apply a force to lift a particular weight. Special arrangement of pulleys can help us in lifting the weights with less effort than directly lifting it.
Complete answer:
In the diagram, ‘E’ is the applied effort, ‘T’ is the tension in the light inextensible string and ‘L’ is the load attached to the movable pulley. Consider the situation at equilibrium. We can see that at equilibrium, net force in the string is zero. Now, we will write the equilibrium equations for different strings.
Hence Effort ‘E’ = T
And for movable pulley, L = T+T = 2T
Now, by the definition of mechanical advantage $M.E = \dfrac{load}{effort} = \dfrac{L}{E} = \dfrac{2T}{T} = 2$
Hence, in the system of one movable and one fixed pulley, mechanical advantage is 2.
So, the correct answer is “Option B”.
Note:
Here, we had considered that the pulley is light and frictionless and also the strings are light. Hence the mechanical advantage came out to be 2. But practically this is not the case. Hence the actual mechanical advantage is always less than two. However this phenomenon is very useful in factories where we have to lift huge weights very delicately. By attaching more movable pulleys, we can further increase the mechanical advantage of the system to any desired value.
Complete answer:
In the diagram, ‘E’ is the applied effort, ‘T’ is the tension in the light inextensible string and ‘L’ is the load attached to the movable pulley. Consider the situation at equilibrium. We can see that at equilibrium, net force in the string is zero. Now, we will write the equilibrium equations for different strings.
Hence Effort ‘E’ = T
And for movable pulley, L = T+T = 2T
Now, by the definition of mechanical advantage $M.E = \dfrac{load}{effort} = \dfrac{L}{E} = \dfrac{2T}{T} = 2$
Hence, in the system of one movable and one fixed pulley, mechanical advantage is 2.
So, the correct answer is “Option B”.
Note:
Here, we had considered that the pulley is light and frictionless and also the strings are light. Hence the mechanical advantage came out to be 2. But practically this is not the case. Hence the actual mechanical advantage is always less than two. However this phenomenon is very useful in factories where we have to lift huge weights very delicately. By attaching more movable pulleys, we can further increase the mechanical advantage of the system to any desired value.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Give a reason for the establishment of the Mohammedan class 10 social science CBSE
What are the two main features of Himadri class 11 social science CBSE
The continent which does not touch the Mediterranean class 7 social science CBSE
India has form of democracy a Direct b Indirect c Presidential class 12 sst CBSE
which foreign country is closest to andaman islands class 10 social science CBSE
One cusec is equal to how many liters class 8 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which foreign country is closest to Andaman Islands class 11 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE