
A polynomial of degree 14 takes the value zero at each of the first 7 odd primes and also at their reciprocals. Find the value of the ratio \[\dfrac{{P(2)}}{{P\left( {\dfrac{1}{2}} \right)}}\].
A) ${4^7}$
B) $ - {4^7}$
C) ${2^7}$
D) 0
Answer
588k+ views
Hint: First we will write all the factors of the function using the roots given to us then multiply them all to a scalar and get the function $P(x)$. Now, we will find the value of \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] and then put in the value $x = 2$ in the resultant to get the required answer.
Complete step-by-step answer:
Let us first write the first 7 odd prime numbers.
Prime numbers are those numbers which do not have any other factor other than 1 and themselves only.
Hence, the first 7 odd primes are 3, 5, 7, 11, 13, 17, 19.
We eliminated 1 because 1 is neither a prime nor a unit and 2 is an even prime, therefore, we have not written that as well.
If $P(x)$ is our original polynomial, therefore, $(x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)$ is a factor of $P(x)$. ……….(1)
Now, their reciprocal are also the roots of the polynomial $P(x)$.
Therefore, $\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$ is also a factor of $P(x)$…...(2)
Combining (1) and (2), we will have:-
$(x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$ is a factor of $P(x)$.
Now these are 14 factors all together. If we multiply, we will get a polynomial of 14 degrees.
Hence, $P(x)$ must be equal to $\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$…….(3)
Rewriting it after simplifying, we will get $P(x)$ equal to:-
$\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {\dfrac{{3x - 1}}{3}} \right)\left( {\dfrac{{5x - 1}}{5}} \right)\left( {\dfrac{{7x - 1}}{7}} \right)\left( {\dfrac{{11x - 1}}{{11}}} \right)\left( {\dfrac{{13x - 1}}{{13}}} \right)\left( {\dfrac{{17x - 1}}{{17}}} \right)\left( {\dfrac{{19x - 1}}{{19}}} \right)$……….(4)
Now, let us replace $x$ with $\dfrac{1}{x}$ in (3), we will get:-
Hence, $P\left( {\dfrac{1}{x}} \right)$ must be equal to $\lambda \left( {\dfrac{1}{x} - 3} \right)\left( {\dfrac{1}{x} - 5} \right)\left( {\dfrac{1}{x} - 7} \right)\left( {\dfrac{1}{x} - 11} \right)\left( {\dfrac{1}{x} - 13} \right)\left( {\dfrac{1}{x} - 17} \right)\left( {\dfrac{1}{x} - 19} \right)\left( {\dfrac{1}{x} - \dfrac{1}{3}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{5}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{7}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{11}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{13}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{17}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{19}}} \right)$Rewriting it after simplifying, we will get $P\left( {\dfrac{1}{x}} \right)$ equal to:-
$\lambda \left( {\dfrac{{1 - 3x}}{x}} \right)\left( {\dfrac{{1 - 5x}}{x}} \right)\left( {\dfrac{{1 - 7x}}{x}} \right)\left( {\dfrac{{1 - 11x}}{x}} \right)\left( {\dfrac{{1 - 13x}}{x}} \right)\left( {\dfrac{{1 - 17x}}{x}} \right)\left( {\dfrac{{1 - 19x}}{x}} \right)\left( {\dfrac{{3 - x}}{{3x}}} \right)\left( {\dfrac{{5 - x}}{{5x}}} \right)\left( {\dfrac{{7 - x}}{{7x}}} \right)\left( {\dfrac{{11 - x}}{{11x}}} \right)\left( {\dfrac{{13 - x}}{{13x}}} \right)\left( {\dfrac{{17 - x}}{{17x}}} \right)\left( {\dfrac{{19 - x}}{{19x}}} \right)$Rewriting it to get $P\left( {\dfrac{1}{x}} \right)$ equal to:-
$\lambda \left( {\dfrac{{3x - 1}}{x}} \right)\left( {\dfrac{{5x - 1}}{x}} \right)\left( {\dfrac{{7x - 1}}{x}} \right)\left( {\dfrac{{11x - 1}}{x}} \right)\left( {\dfrac{{13x - 1}}{x}} \right)\left( {\dfrac{{17x - 1}}{x}} \right)\left( {\dfrac{{19x - 1}}{x}} \right)\left( {\dfrac{{x - 3}}{{3x}}} \right)\left( {\dfrac{{x - 5}}{{5x}}} \right)\left( {\dfrac{{x - 7}}{{7x}}} \right)\left( {\dfrac{{x - 11}}{{11x}}} \right)\left( {\dfrac{{x - 13}}{{13x}}} \right)\left( {\dfrac{{x - 17}}{{17x}}} \right)\left( {\dfrac{{x - 19}}{{19x}}} \right)$…………….(6)
Now, using (4) and (5), we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:
$\dfrac{{\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {\dfrac{{3x - 1}}{3}} \right)\left( {\dfrac{{5x - 1}}{5}} \right)\left( {\dfrac{{7x - 1}}{7}} \right)\left( {\dfrac{{11x - 1}}{{11}}} \right)\left( {\dfrac{{13x - 1}}{{13}}} \right)\left( {\dfrac{{17x - 1}}{{17}}} \right)\left( {\dfrac{{19x - 1}}{{19}}} \right)}}{{\lambda \left( {\dfrac{{3x - 1}}{x}} \right)\left( {\dfrac{{5x - 1}}{x}} \right)\left( {\dfrac{{7x - 1}}{x}} \right)\left( {\dfrac{{11x - 1}}{x}} \right)\left( {\dfrac{{13x - 1}}{x}} \right)\left( {\dfrac{{17x - 1}}{x}} \right)\left( {\dfrac{{19x - 1}}{x}} \right)\left( {\dfrac{{x - 3}}{{3x}}} \right)\left( {\dfrac{{x - 5}}{{5x}}} \right)\left( {\dfrac{{x - 7}}{{7x}}} \right)\left( {\dfrac{{x - 11}}{{11x}}} \right)\left( {\dfrac{{x - 13}}{{13x}}} \right)\left( {\dfrac{{x - 17}}{{17x}}} \right)\left( {\dfrac{{x - 19}}{{19x}}} \right)}}$
Simplifying it, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:-
\[\dfrac{{\left( {\dfrac{1}{3}} \right)\left( {\dfrac{1}{5}} \right)\left( {\dfrac{1}{7}} \right)\left( {\dfrac{1}{{11}}} \right)\left( {\dfrac{1}{{13}}} \right)\left( {\dfrac{1}{{17}}} \right)\left( {\dfrac{1}{{19}}} \right)}}{{\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{{3x}}} \right)\left( {\dfrac{1}{{5x}}} \right)\left( {\dfrac{1}{{7x}}} \right)\left( {\dfrac{1}{{11x}}} \right)\left( {\dfrac{1}{{13x}}} \right)\left( {\dfrac{1}{{17x}}} \right)\left( {\dfrac{1}{{19x}}} \right)}}\]
Simplifying it further, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:
\[\dfrac{1}{{\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)}}\]
Simplifying it further, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to \[\dfrac{1}{{{{\left( {\dfrac{1}{x}} \right)}^{14}}}}\] which is equal to ${x^{14}}$. ………..(7)
Now, we need \[\dfrac{{P(2)}}{{P\left( {\dfrac{1}{2}} \right)}}\]. Therefore, putting $x = 2$ in (7), we will get:-
\[\dfrac{{P(2)}}{{P\left( {\dfrac{1}{2}} \right)}} = {2^{14}} = {\left( {{2^2}} \right)^7} = {4^7}\].
Hence, the correct option is (A).
Note: The students must keep in mind the fact that they cannot write the polynomial without assuming any scalar quantity like here, we assumed $\lambda $ to be the coefficient of the whole polynomial because we are not given the direct polynomial.
Complete step-by-step answer:
Let us first write the first 7 odd prime numbers.
Prime numbers are those numbers which do not have any other factor other than 1 and themselves only.
Hence, the first 7 odd primes are 3, 5, 7, 11, 13, 17, 19.
We eliminated 1 because 1 is neither a prime nor a unit and 2 is an even prime, therefore, we have not written that as well.
If $P(x)$ is our original polynomial, therefore, $(x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)$ is a factor of $P(x)$. ……….(1)
Now, their reciprocal are also the roots of the polynomial $P(x)$.
Therefore, $\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$ is also a factor of $P(x)$…...(2)
Combining (1) and (2), we will have:-
$(x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$ is a factor of $P(x)$.
Now these are 14 factors all together. If we multiply, we will get a polynomial of 14 degrees.
Hence, $P(x)$ must be equal to $\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$…….(3)
Rewriting it after simplifying, we will get $P(x)$ equal to:-
$\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {\dfrac{{3x - 1}}{3}} \right)\left( {\dfrac{{5x - 1}}{5}} \right)\left( {\dfrac{{7x - 1}}{7}} \right)\left( {\dfrac{{11x - 1}}{{11}}} \right)\left( {\dfrac{{13x - 1}}{{13}}} \right)\left( {\dfrac{{17x - 1}}{{17}}} \right)\left( {\dfrac{{19x - 1}}{{19}}} \right)$……….(4)
Now, let us replace $x$ with $\dfrac{1}{x}$ in (3), we will get:-
Hence, $P\left( {\dfrac{1}{x}} \right)$ must be equal to $\lambda \left( {\dfrac{1}{x} - 3} \right)\left( {\dfrac{1}{x} - 5} \right)\left( {\dfrac{1}{x} - 7} \right)\left( {\dfrac{1}{x} - 11} \right)\left( {\dfrac{1}{x} - 13} \right)\left( {\dfrac{1}{x} - 17} \right)\left( {\dfrac{1}{x} - 19} \right)\left( {\dfrac{1}{x} - \dfrac{1}{3}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{5}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{7}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{11}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{13}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{17}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{19}}} \right)$Rewriting it after simplifying, we will get $P\left( {\dfrac{1}{x}} \right)$ equal to:-
$\lambda \left( {\dfrac{{1 - 3x}}{x}} \right)\left( {\dfrac{{1 - 5x}}{x}} \right)\left( {\dfrac{{1 - 7x}}{x}} \right)\left( {\dfrac{{1 - 11x}}{x}} \right)\left( {\dfrac{{1 - 13x}}{x}} \right)\left( {\dfrac{{1 - 17x}}{x}} \right)\left( {\dfrac{{1 - 19x}}{x}} \right)\left( {\dfrac{{3 - x}}{{3x}}} \right)\left( {\dfrac{{5 - x}}{{5x}}} \right)\left( {\dfrac{{7 - x}}{{7x}}} \right)\left( {\dfrac{{11 - x}}{{11x}}} \right)\left( {\dfrac{{13 - x}}{{13x}}} \right)\left( {\dfrac{{17 - x}}{{17x}}} \right)\left( {\dfrac{{19 - x}}{{19x}}} \right)$Rewriting it to get $P\left( {\dfrac{1}{x}} \right)$ equal to:-
$\lambda \left( {\dfrac{{3x - 1}}{x}} \right)\left( {\dfrac{{5x - 1}}{x}} \right)\left( {\dfrac{{7x - 1}}{x}} \right)\left( {\dfrac{{11x - 1}}{x}} \right)\left( {\dfrac{{13x - 1}}{x}} \right)\left( {\dfrac{{17x - 1}}{x}} \right)\left( {\dfrac{{19x - 1}}{x}} \right)\left( {\dfrac{{x - 3}}{{3x}}} \right)\left( {\dfrac{{x - 5}}{{5x}}} \right)\left( {\dfrac{{x - 7}}{{7x}}} \right)\left( {\dfrac{{x - 11}}{{11x}}} \right)\left( {\dfrac{{x - 13}}{{13x}}} \right)\left( {\dfrac{{x - 17}}{{17x}}} \right)\left( {\dfrac{{x - 19}}{{19x}}} \right)$…………….(6)
Now, using (4) and (5), we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:
$\dfrac{{\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {\dfrac{{3x - 1}}{3}} \right)\left( {\dfrac{{5x - 1}}{5}} \right)\left( {\dfrac{{7x - 1}}{7}} \right)\left( {\dfrac{{11x - 1}}{{11}}} \right)\left( {\dfrac{{13x - 1}}{{13}}} \right)\left( {\dfrac{{17x - 1}}{{17}}} \right)\left( {\dfrac{{19x - 1}}{{19}}} \right)}}{{\lambda \left( {\dfrac{{3x - 1}}{x}} \right)\left( {\dfrac{{5x - 1}}{x}} \right)\left( {\dfrac{{7x - 1}}{x}} \right)\left( {\dfrac{{11x - 1}}{x}} \right)\left( {\dfrac{{13x - 1}}{x}} \right)\left( {\dfrac{{17x - 1}}{x}} \right)\left( {\dfrac{{19x - 1}}{x}} \right)\left( {\dfrac{{x - 3}}{{3x}}} \right)\left( {\dfrac{{x - 5}}{{5x}}} \right)\left( {\dfrac{{x - 7}}{{7x}}} \right)\left( {\dfrac{{x - 11}}{{11x}}} \right)\left( {\dfrac{{x - 13}}{{13x}}} \right)\left( {\dfrac{{x - 17}}{{17x}}} \right)\left( {\dfrac{{x - 19}}{{19x}}} \right)}}$
Simplifying it, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:-
\[\dfrac{{\left( {\dfrac{1}{3}} \right)\left( {\dfrac{1}{5}} \right)\left( {\dfrac{1}{7}} \right)\left( {\dfrac{1}{{11}}} \right)\left( {\dfrac{1}{{13}}} \right)\left( {\dfrac{1}{{17}}} \right)\left( {\dfrac{1}{{19}}} \right)}}{{\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{{3x}}} \right)\left( {\dfrac{1}{{5x}}} \right)\left( {\dfrac{1}{{7x}}} \right)\left( {\dfrac{1}{{11x}}} \right)\left( {\dfrac{1}{{13x}}} \right)\left( {\dfrac{1}{{17x}}} \right)\left( {\dfrac{1}{{19x}}} \right)}}\]
Simplifying it further, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:
\[\dfrac{1}{{\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)}}\]
Simplifying it further, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to \[\dfrac{1}{{{{\left( {\dfrac{1}{x}} \right)}^{14}}}}\] which is equal to ${x^{14}}$. ………..(7)
Now, we need \[\dfrac{{P(2)}}{{P\left( {\dfrac{1}{2}} \right)}}\]. Therefore, putting $x = 2$ in (7), we will get:-
\[\dfrac{{P(2)}}{{P\left( {\dfrac{1}{2}} \right)}} = {2^{14}} = {\left( {{2^2}} \right)^7} = {4^7}\].
Hence, the correct option is (A).
Note: The students must keep in mind the fact that they cannot write the polynomial without assuming any scalar quantity like here, we assumed $\lambda $ to be the coefficient of the whole polynomial because we are not given the direct polynomial.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

