
A polynomial of degree 14 takes the value zero at each of the first 7 odd primes and also at their reciprocals. Find the value of the ratio \[\dfrac{{P(2)}}{{P\left( {\dfrac{1}{2}} \right)}}\].
A) ${4^7}$
B) $ - {4^7}$
C) ${2^7}$
D) 0
Answer
574.2k+ views
Hint: First we will write all the factors of the function using the roots given to us then multiply them all to a scalar and get the function $P(x)$. Now, we will find the value of \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] and then put in the value $x = 2$ in the resultant to get the required answer.
Complete step-by-step answer:
Let us first write the first 7 odd prime numbers.
Prime numbers are those numbers which do not have any other factor other than 1 and themselves only.
Hence, the first 7 odd primes are 3, 5, 7, 11, 13, 17, 19.
We eliminated 1 because 1 is neither a prime nor a unit and 2 is an even prime, therefore, we have not written that as well.
If $P(x)$ is our original polynomial, therefore, $(x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)$ is a factor of $P(x)$. ……….(1)
Now, their reciprocal are also the roots of the polynomial $P(x)$.
Therefore, $\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$ is also a factor of $P(x)$…...(2)
Combining (1) and (2), we will have:-
$(x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$ is a factor of $P(x)$.
Now these are 14 factors all together. If we multiply, we will get a polynomial of 14 degrees.
Hence, $P(x)$ must be equal to $\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$…….(3)
Rewriting it after simplifying, we will get $P(x)$ equal to:-
$\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {\dfrac{{3x - 1}}{3}} \right)\left( {\dfrac{{5x - 1}}{5}} \right)\left( {\dfrac{{7x - 1}}{7}} \right)\left( {\dfrac{{11x - 1}}{{11}}} \right)\left( {\dfrac{{13x - 1}}{{13}}} \right)\left( {\dfrac{{17x - 1}}{{17}}} \right)\left( {\dfrac{{19x - 1}}{{19}}} \right)$……….(4)
Now, let us replace $x$ with $\dfrac{1}{x}$ in (3), we will get:-
Hence, $P\left( {\dfrac{1}{x}} \right)$ must be equal to $\lambda \left( {\dfrac{1}{x} - 3} \right)\left( {\dfrac{1}{x} - 5} \right)\left( {\dfrac{1}{x} - 7} \right)\left( {\dfrac{1}{x} - 11} \right)\left( {\dfrac{1}{x} - 13} \right)\left( {\dfrac{1}{x} - 17} \right)\left( {\dfrac{1}{x} - 19} \right)\left( {\dfrac{1}{x} - \dfrac{1}{3}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{5}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{7}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{11}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{13}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{17}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{19}}} \right)$Rewriting it after simplifying, we will get $P\left( {\dfrac{1}{x}} \right)$ equal to:-
$\lambda \left( {\dfrac{{1 - 3x}}{x}} \right)\left( {\dfrac{{1 - 5x}}{x}} \right)\left( {\dfrac{{1 - 7x}}{x}} \right)\left( {\dfrac{{1 - 11x}}{x}} \right)\left( {\dfrac{{1 - 13x}}{x}} \right)\left( {\dfrac{{1 - 17x}}{x}} \right)\left( {\dfrac{{1 - 19x}}{x}} \right)\left( {\dfrac{{3 - x}}{{3x}}} \right)\left( {\dfrac{{5 - x}}{{5x}}} \right)\left( {\dfrac{{7 - x}}{{7x}}} \right)\left( {\dfrac{{11 - x}}{{11x}}} \right)\left( {\dfrac{{13 - x}}{{13x}}} \right)\left( {\dfrac{{17 - x}}{{17x}}} \right)\left( {\dfrac{{19 - x}}{{19x}}} \right)$Rewriting it to get $P\left( {\dfrac{1}{x}} \right)$ equal to:-
$\lambda \left( {\dfrac{{3x - 1}}{x}} \right)\left( {\dfrac{{5x - 1}}{x}} \right)\left( {\dfrac{{7x - 1}}{x}} \right)\left( {\dfrac{{11x - 1}}{x}} \right)\left( {\dfrac{{13x - 1}}{x}} \right)\left( {\dfrac{{17x - 1}}{x}} \right)\left( {\dfrac{{19x - 1}}{x}} \right)\left( {\dfrac{{x - 3}}{{3x}}} \right)\left( {\dfrac{{x - 5}}{{5x}}} \right)\left( {\dfrac{{x - 7}}{{7x}}} \right)\left( {\dfrac{{x - 11}}{{11x}}} \right)\left( {\dfrac{{x - 13}}{{13x}}} \right)\left( {\dfrac{{x - 17}}{{17x}}} \right)\left( {\dfrac{{x - 19}}{{19x}}} \right)$…………….(6)
Now, using (4) and (5), we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:
$\dfrac{{\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {\dfrac{{3x - 1}}{3}} \right)\left( {\dfrac{{5x - 1}}{5}} \right)\left( {\dfrac{{7x - 1}}{7}} \right)\left( {\dfrac{{11x - 1}}{{11}}} \right)\left( {\dfrac{{13x - 1}}{{13}}} \right)\left( {\dfrac{{17x - 1}}{{17}}} \right)\left( {\dfrac{{19x - 1}}{{19}}} \right)}}{{\lambda \left( {\dfrac{{3x - 1}}{x}} \right)\left( {\dfrac{{5x - 1}}{x}} \right)\left( {\dfrac{{7x - 1}}{x}} \right)\left( {\dfrac{{11x - 1}}{x}} \right)\left( {\dfrac{{13x - 1}}{x}} \right)\left( {\dfrac{{17x - 1}}{x}} \right)\left( {\dfrac{{19x - 1}}{x}} \right)\left( {\dfrac{{x - 3}}{{3x}}} \right)\left( {\dfrac{{x - 5}}{{5x}}} \right)\left( {\dfrac{{x - 7}}{{7x}}} \right)\left( {\dfrac{{x - 11}}{{11x}}} \right)\left( {\dfrac{{x - 13}}{{13x}}} \right)\left( {\dfrac{{x - 17}}{{17x}}} \right)\left( {\dfrac{{x - 19}}{{19x}}} \right)}}$
Simplifying it, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:-
\[\dfrac{{\left( {\dfrac{1}{3}} \right)\left( {\dfrac{1}{5}} \right)\left( {\dfrac{1}{7}} \right)\left( {\dfrac{1}{{11}}} \right)\left( {\dfrac{1}{{13}}} \right)\left( {\dfrac{1}{{17}}} \right)\left( {\dfrac{1}{{19}}} \right)}}{{\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{{3x}}} \right)\left( {\dfrac{1}{{5x}}} \right)\left( {\dfrac{1}{{7x}}} \right)\left( {\dfrac{1}{{11x}}} \right)\left( {\dfrac{1}{{13x}}} \right)\left( {\dfrac{1}{{17x}}} \right)\left( {\dfrac{1}{{19x}}} \right)}}\]
Simplifying it further, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:
\[\dfrac{1}{{\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)}}\]
Simplifying it further, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to \[\dfrac{1}{{{{\left( {\dfrac{1}{x}} \right)}^{14}}}}\] which is equal to ${x^{14}}$. ………..(7)
Now, we need \[\dfrac{{P(2)}}{{P\left( {\dfrac{1}{2}} \right)}}\]. Therefore, putting $x = 2$ in (7), we will get:-
\[\dfrac{{P(2)}}{{P\left( {\dfrac{1}{2}} \right)}} = {2^{14}} = {\left( {{2^2}} \right)^7} = {4^7}\].
Hence, the correct option is (A).
Note: The students must keep in mind the fact that they cannot write the polynomial without assuming any scalar quantity like here, we assumed $\lambda $ to be the coefficient of the whole polynomial because we are not given the direct polynomial.
Complete step-by-step answer:
Let us first write the first 7 odd prime numbers.
Prime numbers are those numbers which do not have any other factor other than 1 and themselves only.
Hence, the first 7 odd primes are 3, 5, 7, 11, 13, 17, 19.
We eliminated 1 because 1 is neither a prime nor a unit and 2 is an even prime, therefore, we have not written that as well.
If $P(x)$ is our original polynomial, therefore, $(x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)$ is a factor of $P(x)$. ……….(1)
Now, their reciprocal are also the roots of the polynomial $P(x)$.
Therefore, $\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$ is also a factor of $P(x)$…...(2)
Combining (1) and (2), we will have:-
$(x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$ is a factor of $P(x)$.
Now these are 14 factors all together. If we multiply, we will get a polynomial of 14 degrees.
Hence, $P(x)$ must be equal to $\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {x - \dfrac{1}{3}} \right)\left( {x - \dfrac{1}{5}} \right)\left( {x - \dfrac{1}{7}} \right)\left( {x - \dfrac{1}{{11}}} \right)\left( {x - \dfrac{1}{{13}}} \right)\left( {x - \dfrac{1}{{17}}} \right)\left( {x - \dfrac{1}{{19}}} \right)$…….(3)
Rewriting it after simplifying, we will get $P(x)$ equal to:-
$\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {\dfrac{{3x - 1}}{3}} \right)\left( {\dfrac{{5x - 1}}{5}} \right)\left( {\dfrac{{7x - 1}}{7}} \right)\left( {\dfrac{{11x - 1}}{{11}}} \right)\left( {\dfrac{{13x - 1}}{{13}}} \right)\left( {\dfrac{{17x - 1}}{{17}}} \right)\left( {\dfrac{{19x - 1}}{{19}}} \right)$……….(4)
Now, let us replace $x$ with $\dfrac{1}{x}$ in (3), we will get:-
Hence, $P\left( {\dfrac{1}{x}} \right)$ must be equal to $\lambda \left( {\dfrac{1}{x} - 3} \right)\left( {\dfrac{1}{x} - 5} \right)\left( {\dfrac{1}{x} - 7} \right)\left( {\dfrac{1}{x} - 11} \right)\left( {\dfrac{1}{x} - 13} \right)\left( {\dfrac{1}{x} - 17} \right)\left( {\dfrac{1}{x} - 19} \right)\left( {\dfrac{1}{x} - \dfrac{1}{3}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{5}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{7}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{11}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{13}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{17}}} \right)\left( {\dfrac{1}{x} - \dfrac{1}{{19}}} \right)$Rewriting it after simplifying, we will get $P\left( {\dfrac{1}{x}} \right)$ equal to:-
$\lambda \left( {\dfrac{{1 - 3x}}{x}} \right)\left( {\dfrac{{1 - 5x}}{x}} \right)\left( {\dfrac{{1 - 7x}}{x}} \right)\left( {\dfrac{{1 - 11x}}{x}} \right)\left( {\dfrac{{1 - 13x}}{x}} \right)\left( {\dfrac{{1 - 17x}}{x}} \right)\left( {\dfrac{{1 - 19x}}{x}} \right)\left( {\dfrac{{3 - x}}{{3x}}} \right)\left( {\dfrac{{5 - x}}{{5x}}} \right)\left( {\dfrac{{7 - x}}{{7x}}} \right)\left( {\dfrac{{11 - x}}{{11x}}} \right)\left( {\dfrac{{13 - x}}{{13x}}} \right)\left( {\dfrac{{17 - x}}{{17x}}} \right)\left( {\dfrac{{19 - x}}{{19x}}} \right)$Rewriting it to get $P\left( {\dfrac{1}{x}} \right)$ equal to:-
$\lambda \left( {\dfrac{{3x - 1}}{x}} \right)\left( {\dfrac{{5x - 1}}{x}} \right)\left( {\dfrac{{7x - 1}}{x}} \right)\left( {\dfrac{{11x - 1}}{x}} \right)\left( {\dfrac{{13x - 1}}{x}} \right)\left( {\dfrac{{17x - 1}}{x}} \right)\left( {\dfrac{{19x - 1}}{x}} \right)\left( {\dfrac{{x - 3}}{{3x}}} \right)\left( {\dfrac{{x - 5}}{{5x}}} \right)\left( {\dfrac{{x - 7}}{{7x}}} \right)\left( {\dfrac{{x - 11}}{{11x}}} \right)\left( {\dfrac{{x - 13}}{{13x}}} \right)\left( {\dfrac{{x - 17}}{{17x}}} \right)\left( {\dfrac{{x - 19}}{{19x}}} \right)$…………….(6)
Now, using (4) and (5), we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:
$\dfrac{{\lambda (x - 3)(x - 5)(x - 7)(x - 11)(x - 13)(x - 17)(x - 19)\left( {\dfrac{{3x - 1}}{3}} \right)\left( {\dfrac{{5x - 1}}{5}} \right)\left( {\dfrac{{7x - 1}}{7}} \right)\left( {\dfrac{{11x - 1}}{{11}}} \right)\left( {\dfrac{{13x - 1}}{{13}}} \right)\left( {\dfrac{{17x - 1}}{{17}}} \right)\left( {\dfrac{{19x - 1}}{{19}}} \right)}}{{\lambda \left( {\dfrac{{3x - 1}}{x}} \right)\left( {\dfrac{{5x - 1}}{x}} \right)\left( {\dfrac{{7x - 1}}{x}} \right)\left( {\dfrac{{11x - 1}}{x}} \right)\left( {\dfrac{{13x - 1}}{x}} \right)\left( {\dfrac{{17x - 1}}{x}} \right)\left( {\dfrac{{19x - 1}}{x}} \right)\left( {\dfrac{{x - 3}}{{3x}}} \right)\left( {\dfrac{{x - 5}}{{5x}}} \right)\left( {\dfrac{{x - 7}}{{7x}}} \right)\left( {\dfrac{{x - 11}}{{11x}}} \right)\left( {\dfrac{{x - 13}}{{13x}}} \right)\left( {\dfrac{{x - 17}}{{17x}}} \right)\left( {\dfrac{{x - 19}}{{19x}}} \right)}}$
Simplifying it, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:-
\[\dfrac{{\left( {\dfrac{1}{3}} \right)\left( {\dfrac{1}{5}} \right)\left( {\dfrac{1}{7}} \right)\left( {\dfrac{1}{{11}}} \right)\left( {\dfrac{1}{{13}}} \right)\left( {\dfrac{1}{{17}}} \right)\left( {\dfrac{1}{{19}}} \right)}}{{\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{{3x}}} \right)\left( {\dfrac{1}{{5x}}} \right)\left( {\dfrac{1}{{7x}}} \right)\left( {\dfrac{1}{{11x}}} \right)\left( {\dfrac{1}{{13x}}} \right)\left( {\dfrac{1}{{17x}}} \right)\left( {\dfrac{1}{{19x}}} \right)}}\]
Simplifying it further, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to:
\[\dfrac{1}{{\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)\left( {\dfrac{1}{x}} \right)}}\]
Simplifying it further, we will get \[\dfrac{{P(x)}}{{P\left( {\dfrac{1}{x}} \right)}}\] equal to \[\dfrac{1}{{{{\left( {\dfrac{1}{x}} \right)}^{14}}}}\] which is equal to ${x^{14}}$. ………..(7)
Now, we need \[\dfrac{{P(2)}}{{P\left( {\dfrac{1}{2}} \right)}}\]. Therefore, putting $x = 2$ in (7), we will get:-
\[\dfrac{{P(2)}}{{P\left( {\dfrac{1}{2}} \right)}} = {2^{14}} = {\left( {{2^2}} \right)^7} = {4^7}\].
Hence, the correct option is (A).
Note: The students must keep in mind the fact that they cannot write the polynomial without assuming any scalar quantity like here, we assumed $\lambda $ to be the coefficient of the whole polynomial because we are not given the direct polynomial.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

