
A pole is slightly inclined towards the east. At two points due west of it at distances $a\,\,and\,\,b$, the angle of elevation of the top of the pole are \[\alpha \,\,and\,\,\beta \] respectively. The inclination of the pole to the horizon is:
A. ${\tan ^{ - 1}}\left[ {\dfrac{{a + b}}{{b\cot \alpha - \cot \beta }}} \right]$
B. ${\tan ^{ - 1}}\left[ {\dfrac{{b - a}}{{b\cot \alpha - acot\beta }}} \right]$
C. ${\cos ^{ - 1}}\left[ {\dfrac{{a - b}}{{b\cos \alpha - \cos \beta }}} \right]$
D. ${\sin ^{ - 1}}\left[ {\dfrac{{a - b}}{{b\cot \alpha - a\cot \beta }}} \right]$
Answer
573.6k+ views
Hint: Firstly, we will make a diagram according to the information in the question. Thereafter, we will solve and find the value of $c$and $h$, then find the inclined angle to get the answer.
Complete step-by-step answer:
Let $AB$ be a pole $C\,\,and\,\,D$ are the points from where it is observed.
Let $AB = h,\,\,BE = c$
Here, $ED = a\,\,and\,\,EC = b$
Now, in$\Delta ABD,\,\,at\,\,\angle B = {90^o}$, by using trigonometric ratio, we have
$
tan\alpha = \dfrac{{AB}}{{BD}} \\
\tan \alpha = \dfrac{{AB}}{{BE + ED}} \\
$
We will substitute the value of $AB = h,\,\,BE = c$and $ED = a\,$,we have
$\tan \alpha = \dfrac{h}{{a + c}}$
\[(a + C)\tan \alpha = h\] …..(i)
Similarly, in $\Delta ABC,\,\,at\,\,\angle \beta = {90^{}}O$, so by using trigonometric ratio we have
$
tan\beta = \dfrac{{AB}}{{BC}} \\
\tan \beta = \dfrac{{AB}}{{BE + EC}} \\
$
We will substitute the value of $AB = h,\,\,BE = c$and $EC = b$,we have
$\tan \beta = \dfrac{h}{{c + b}}$
\[(b + c)\tan \beta = h\] ……(ii)
Now, from equation (i) and (ii), we have
$(a + c)\tan \alpha = (b + c)\tan \beta $
$a\tan \alpha + c\tan \alpha = b\tan \beta + c\tan \beta $
$a\tan \alpha - b\tan \beta = c\tan \beta - c\tan \alpha $
$a\tan \alpha - b\tan \beta = c(\tan \beta - \tan \alpha )$
$ \Rightarrow c = \dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}$ …….(iii)
Now, we will substitute the value of $c$in equation (i), we have
$h = a\tan \alpha + c\tan \alpha $
\[h = \dfrac{{a\tan \alpha }}{1} + \tan \alpha \left( {\dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}} \right)\]
Now, we will take LCM $\tan \beta - \tan \alpha ,$we have
$h = \dfrac{{a\tan \alpha (\tan \beta - \tan \alpha ) + \tan \alpha (a\tan \alpha - b\tan \beta )}}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - a{{\tan }^2}\alpha + a{{\tan }^2}\alpha - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
Take $\tan \alpha \tan \beta $ common in the numerator, we have
$h = \dfrac{{\tan \alpha \tan \beta (a - b)}}{{\tan \beta - \tan \alpha }}$
Now, in $\Delta ABE$
$\tan \theta = \dfrac{{AB}}{{BE}}$
$\tan \theta = \dfrac{h}{c}$ …..(iv)
Now, we will substitute ion value of $h$ and $c$ in equation (iv) , we have
$\tan \theta = \dfrac{{\dfrac{{(a - b)\tan \alpha \tan \beta )}}{{\tan \beta - \tan \alpha }}}}{{\dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}}}$
$\tan \theta = \dfrac{{(a - b)\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }} \times \dfrac{{tan\beta - \tan \alpha }}{{a\tan \alpha - b\tan \beta }}$
$\tan \theta = \dfrac{{(a - b)\tan \alpha \tan \beta }}{{(a\tan \alpha - btain\beta )}}$
\[\tan \theta = \dfrac{{ - (b - a)\tan \alpha \tan \beta }}{{ - (b\tan \beta - a\tan \alpha )}}\]
$\tan \theta = \dfrac{{(b - a)\tan \alpha \tan \beta }}{{b\tan \beta - a\tan \alpha }}$
Now, as we know that $\tan \theta = \dfrac{1}{{\cot \theta }}$
$\tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }}}}{{\left( {\dfrac{b}{{\cot \beta }} - \dfrac{a}{{\cot \alpha }}} \right)}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }}}}{{\left( {\dfrac{{b\cot \alpha - a\cot \beta }}{{\cot \beta \times \cot \alpha }}} \right)}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }} \times \cot \beta \times \cot \alpha }}{{b\cot \alpha - a\cot \beta )}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)}}{{b\cot \alpha - a\cot \beta }}$
$ \Rightarrow \theta = {\tan ^{ - 1}}\dfrac{{(b - a)}}{{b\cot \alpha - a\cot \beta }}$
So, the correct answer is “Option B”.
Note: Students remember that when you make an angle of elevation then follow this instruction it will help you. When you see an object above you, there is an angle of elevation between the horizontal and your line of sight to the object.
Complete step-by-step answer:
Let $AB$ be a pole $C\,\,and\,\,D$ are the points from where it is observed.
Let $AB = h,\,\,BE = c$
Here, $ED = a\,\,and\,\,EC = b$
Now, in$\Delta ABD,\,\,at\,\,\angle B = {90^o}$, by using trigonometric ratio, we have
$
tan\alpha = \dfrac{{AB}}{{BD}} \\
\tan \alpha = \dfrac{{AB}}{{BE + ED}} \\
$
We will substitute the value of $AB = h,\,\,BE = c$and $ED = a\,$,we have
$\tan \alpha = \dfrac{h}{{a + c}}$
\[(a + C)\tan \alpha = h\] …..(i)
Similarly, in $\Delta ABC,\,\,at\,\,\angle \beta = {90^{}}O$, so by using trigonometric ratio we have
$
tan\beta = \dfrac{{AB}}{{BC}} \\
\tan \beta = \dfrac{{AB}}{{BE + EC}} \\
$
We will substitute the value of $AB = h,\,\,BE = c$and $EC = b$,we have
$\tan \beta = \dfrac{h}{{c + b}}$
\[(b + c)\tan \beta = h\] ……(ii)
Now, from equation (i) and (ii), we have
$(a + c)\tan \alpha = (b + c)\tan \beta $
$a\tan \alpha + c\tan \alpha = b\tan \beta + c\tan \beta $
$a\tan \alpha - b\tan \beta = c\tan \beta - c\tan \alpha $
$a\tan \alpha - b\tan \beta = c(\tan \beta - \tan \alpha )$
$ \Rightarrow c = \dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}$ …….(iii)
Now, we will substitute the value of $c$in equation (i), we have
$h = a\tan \alpha + c\tan \alpha $
\[h = \dfrac{{a\tan \alpha }}{1} + \tan \alpha \left( {\dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}} \right)\]
Now, we will take LCM $\tan \beta - \tan \alpha ,$we have
$h = \dfrac{{a\tan \alpha (\tan \beta - \tan \alpha ) + \tan \alpha (a\tan \alpha - b\tan \beta )}}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - a{{\tan }^2}\alpha + a{{\tan }^2}\alpha - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
Take $\tan \alpha \tan \beta $ common in the numerator, we have
$h = \dfrac{{\tan \alpha \tan \beta (a - b)}}{{\tan \beta - \tan \alpha }}$
Now, in $\Delta ABE$
$\tan \theta = \dfrac{{AB}}{{BE}}$
$\tan \theta = \dfrac{h}{c}$ …..(iv)
Now, we will substitute ion value of $h$ and $c$ in equation (iv) , we have
$\tan \theta = \dfrac{{\dfrac{{(a - b)\tan \alpha \tan \beta )}}{{\tan \beta - \tan \alpha }}}}{{\dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}}}$
$\tan \theta = \dfrac{{(a - b)\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }} \times \dfrac{{tan\beta - \tan \alpha }}{{a\tan \alpha - b\tan \beta }}$
$\tan \theta = \dfrac{{(a - b)\tan \alpha \tan \beta }}{{(a\tan \alpha - btain\beta )}}$
\[\tan \theta = \dfrac{{ - (b - a)\tan \alpha \tan \beta }}{{ - (b\tan \beta - a\tan \alpha )}}\]
$\tan \theta = \dfrac{{(b - a)\tan \alpha \tan \beta }}{{b\tan \beta - a\tan \alpha }}$
Now, as we know that $\tan \theta = \dfrac{1}{{\cot \theta }}$
$\tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }}}}{{\left( {\dfrac{b}{{\cot \beta }} - \dfrac{a}{{\cot \alpha }}} \right)}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }}}}{{\left( {\dfrac{{b\cot \alpha - a\cot \beta }}{{\cot \beta \times \cot \alpha }}} \right)}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }} \times \cot \beta \times \cot \alpha }}{{b\cot \alpha - a\cot \beta )}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)}}{{b\cot \alpha - a\cot \beta }}$
$ \Rightarrow \theta = {\tan ^{ - 1}}\dfrac{{(b - a)}}{{b\cot \alpha - a\cot \beta }}$
So, the correct answer is “Option B”.
Note: Students remember that when you make an angle of elevation then follow this instruction it will help you. When you see an object above you, there is an angle of elevation between the horizontal and your line of sight to the object.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

