
A pole is slightly inclined towards the east. At two points due west of it at distances $a\,\,and\,\,b$, the angle of elevation of the top of the pole are \[\alpha \,\,and\,\,\beta \] respectively. The inclination of the pole to the horizon is:
A. ${\tan ^{ - 1}}\left[ {\dfrac{{a + b}}{{b\cot \alpha - \cot \beta }}} \right]$
B. ${\tan ^{ - 1}}\left[ {\dfrac{{b - a}}{{b\cot \alpha - acot\beta }}} \right]$
C. ${\cos ^{ - 1}}\left[ {\dfrac{{a - b}}{{b\cos \alpha - \cos \beta }}} \right]$
D. ${\sin ^{ - 1}}\left[ {\dfrac{{a - b}}{{b\cot \alpha - a\cot \beta }}} \right]$
Answer
587.4k+ views
Hint: Firstly, we will make a diagram according to the information in the question. Thereafter, we will solve and find the value of $c$and $h$, then find the inclined angle to get the answer.
Complete step-by-step answer:
Let $AB$ be a pole $C\,\,and\,\,D$ are the points from where it is observed.
Let $AB = h,\,\,BE = c$
Here, $ED = a\,\,and\,\,EC = b$
Now, in$\Delta ABD,\,\,at\,\,\angle B = {90^o}$, by using trigonometric ratio, we have
$
tan\alpha = \dfrac{{AB}}{{BD}} \\
\tan \alpha = \dfrac{{AB}}{{BE + ED}} \\
$
We will substitute the value of $AB = h,\,\,BE = c$and $ED = a\,$,we have
$\tan \alpha = \dfrac{h}{{a + c}}$
\[(a + C)\tan \alpha = h\] …..(i)
Similarly, in $\Delta ABC,\,\,at\,\,\angle \beta = {90^{}}O$, so by using trigonometric ratio we have
$
tan\beta = \dfrac{{AB}}{{BC}} \\
\tan \beta = \dfrac{{AB}}{{BE + EC}} \\
$
We will substitute the value of $AB = h,\,\,BE = c$and $EC = b$,we have
$\tan \beta = \dfrac{h}{{c + b}}$
\[(b + c)\tan \beta = h\] ……(ii)
Now, from equation (i) and (ii), we have
$(a + c)\tan \alpha = (b + c)\tan \beta $
$a\tan \alpha + c\tan \alpha = b\tan \beta + c\tan \beta $
$a\tan \alpha - b\tan \beta = c\tan \beta - c\tan \alpha $
$a\tan \alpha - b\tan \beta = c(\tan \beta - \tan \alpha )$
$ \Rightarrow c = \dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}$ …….(iii)
Now, we will substitute the value of $c$in equation (i), we have
$h = a\tan \alpha + c\tan \alpha $
\[h = \dfrac{{a\tan \alpha }}{1} + \tan \alpha \left( {\dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}} \right)\]
Now, we will take LCM $\tan \beta - \tan \alpha ,$we have
$h = \dfrac{{a\tan \alpha (\tan \beta - \tan \alpha ) + \tan \alpha (a\tan \alpha - b\tan \beta )}}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - a{{\tan }^2}\alpha + a{{\tan }^2}\alpha - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
Take $\tan \alpha \tan \beta $ common in the numerator, we have
$h = \dfrac{{\tan \alpha \tan \beta (a - b)}}{{\tan \beta - \tan \alpha }}$
Now, in $\Delta ABE$
$\tan \theta = \dfrac{{AB}}{{BE}}$
$\tan \theta = \dfrac{h}{c}$ …..(iv)
Now, we will substitute ion value of $h$ and $c$ in equation (iv) , we have
$\tan \theta = \dfrac{{\dfrac{{(a - b)\tan \alpha \tan \beta )}}{{\tan \beta - \tan \alpha }}}}{{\dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}}}$
$\tan \theta = \dfrac{{(a - b)\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }} \times \dfrac{{tan\beta - \tan \alpha }}{{a\tan \alpha - b\tan \beta }}$
$\tan \theta = \dfrac{{(a - b)\tan \alpha \tan \beta }}{{(a\tan \alpha - btain\beta )}}$
\[\tan \theta = \dfrac{{ - (b - a)\tan \alpha \tan \beta }}{{ - (b\tan \beta - a\tan \alpha )}}\]
$\tan \theta = \dfrac{{(b - a)\tan \alpha \tan \beta }}{{b\tan \beta - a\tan \alpha }}$
Now, as we know that $\tan \theta = \dfrac{1}{{\cot \theta }}$
$\tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }}}}{{\left( {\dfrac{b}{{\cot \beta }} - \dfrac{a}{{\cot \alpha }}} \right)}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }}}}{{\left( {\dfrac{{b\cot \alpha - a\cot \beta }}{{\cot \beta \times \cot \alpha }}} \right)}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }} \times \cot \beta \times \cot \alpha }}{{b\cot \alpha - a\cot \beta )}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)}}{{b\cot \alpha - a\cot \beta }}$
$ \Rightarrow \theta = {\tan ^{ - 1}}\dfrac{{(b - a)}}{{b\cot \alpha - a\cot \beta }}$
So, the correct answer is “Option B”.
Note: Students remember that when you make an angle of elevation then follow this instruction it will help you. When you see an object above you, there is an angle of elevation between the horizontal and your line of sight to the object.
Complete step-by-step answer:
Let $AB$ be a pole $C\,\,and\,\,D$ are the points from where it is observed.
Let $AB = h,\,\,BE = c$
Here, $ED = a\,\,and\,\,EC = b$
Now, in$\Delta ABD,\,\,at\,\,\angle B = {90^o}$, by using trigonometric ratio, we have
$
tan\alpha = \dfrac{{AB}}{{BD}} \\
\tan \alpha = \dfrac{{AB}}{{BE + ED}} \\
$
We will substitute the value of $AB = h,\,\,BE = c$and $ED = a\,$,we have
$\tan \alpha = \dfrac{h}{{a + c}}$
\[(a + C)\tan \alpha = h\] …..(i)
Similarly, in $\Delta ABC,\,\,at\,\,\angle \beta = {90^{}}O$, so by using trigonometric ratio we have
$
tan\beta = \dfrac{{AB}}{{BC}} \\
\tan \beta = \dfrac{{AB}}{{BE + EC}} \\
$
We will substitute the value of $AB = h,\,\,BE = c$and $EC = b$,we have
$\tan \beta = \dfrac{h}{{c + b}}$
\[(b + c)\tan \beta = h\] ……(ii)
Now, from equation (i) and (ii), we have
$(a + c)\tan \alpha = (b + c)\tan \beta $
$a\tan \alpha + c\tan \alpha = b\tan \beta + c\tan \beta $
$a\tan \alpha - b\tan \beta = c\tan \beta - c\tan \alpha $
$a\tan \alpha - b\tan \beta = c(\tan \beta - \tan \alpha )$
$ \Rightarrow c = \dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}$ …….(iii)
Now, we will substitute the value of $c$in equation (i), we have
$h = a\tan \alpha + c\tan \alpha $
\[h = \dfrac{{a\tan \alpha }}{1} + \tan \alpha \left( {\dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}} \right)\]
Now, we will take LCM $\tan \beta - \tan \alpha ,$we have
$h = \dfrac{{a\tan \alpha (\tan \beta - \tan \alpha ) + \tan \alpha (a\tan \alpha - b\tan \beta )}}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - a{{\tan }^2}\alpha + a{{\tan }^2}\alpha - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
$h = \dfrac{{a\tan \alpha \tan \beta - b\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }}$
Take $\tan \alpha \tan \beta $ common in the numerator, we have
$h = \dfrac{{\tan \alpha \tan \beta (a - b)}}{{\tan \beta - \tan \alpha }}$
Now, in $\Delta ABE$
$\tan \theta = \dfrac{{AB}}{{BE}}$
$\tan \theta = \dfrac{h}{c}$ …..(iv)
Now, we will substitute ion value of $h$ and $c$ in equation (iv) , we have
$\tan \theta = \dfrac{{\dfrac{{(a - b)\tan \alpha \tan \beta )}}{{\tan \beta - \tan \alpha }}}}{{\dfrac{{a\tan \alpha - b\tan \beta }}{{\tan \beta - \tan \alpha }}}}$
$\tan \theta = \dfrac{{(a - b)\tan \alpha \tan \beta }}{{\tan \beta - \tan \alpha }} \times \dfrac{{tan\beta - \tan \alpha }}{{a\tan \alpha - b\tan \beta }}$
$\tan \theta = \dfrac{{(a - b)\tan \alpha \tan \beta }}{{(a\tan \alpha - btain\beta )}}$
\[\tan \theta = \dfrac{{ - (b - a)\tan \alpha \tan \beta }}{{ - (b\tan \beta - a\tan \alpha )}}\]
$\tan \theta = \dfrac{{(b - a)\tan \alpha \tan \beta }}{{b\tan \beta - a\tan \alpha }}$
Now, as we know that $\tan \theta = \dfrac{1}{{\cot \theta }}$
$\tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }}}}{{\left( {\dfrac{b}{{\cot \beta }} - \dfrac{a}{{\cot \alpha }}} \right)}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }}}}{{\left( {\dfrac{{b\cot \alpha - a\cot \beta }}{{\cot \beta \times \cot \alpha }}} \right)}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)\dfrac{1}{{\cot \alpha }} \times \dfrac{1}{{\cot \beta }} \times \cot \beta \times \cot \alpha }}{{b\cot \alpha - a\cot \beta )}}$
$ \Rightarrow \tan \theta = \dfrac{{(b - a)}}{{b\cot \alpha - a\cot \beta }}$
$ \Rightarrow \theta = {\tan ^{ - 1}}\dfrac{{(b - a)}}{{b\cot \alpha - a\cot \beta }}$
So, the correct answer is “Option B”.
Note: Students remember that when you make an angle of elevation then follow this instruction it will help you. When you see an object above you, there is an angle of elevation between the horizontal and your line of sight to the object.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

