
A plane polarized light having intensity ${I}_{0}$ has vibration parallel to the polarizer axis. If the plane of the polarizer is rotated by $15°$. The intensity of light transmitted by polarizer is:
$A. { I }_{ 0 }\left( \dfrac { 2+\sqrt { 3 } }{ 4 } \right)$
$B. { I }_{ 0 }\left( \cfrac { 2-\sqrt { 3 } }{ 4 } \right)$
$C. { \dfrac { \sqrt { 3 } }{ 2 } { I }_{ 0 } }$
$D. { \dfrac { 3 }{ 4 } { I }_{ 0 } }$
Answer
555.6k+ views
Hint: To solve this question, use the formula for Malus’s law. It states that when completely plane polarized light incidents on an analyzer, the intensity of the light transmitted by the polarizer is directly proportional to the square of the cosine of angle between transmission axes of polarizer and analyzer. Substitute the value in the equation and find the factor by which intensity decreases.
Formula used:
$I ={I}_{0} {\cos}^{2}{\theta}$
Complete answer:
Given: $\theta$ = 15°
Malus’s law is given by,
$I ={I}_{0} {\cos}^{2}{\theta}$ …(1)
Where, I is the intensity after polarization
${I}_{0}$ is the initial intensity
Substituting the value in above equation we get,
$I ={I}_{0}\times {\cos}^{2}{15°}$ …(2)
We know,
$\cos { { 15 }^{ ° } } =\cfrac { \sqrt { 2+\sqrt { 3 } } }{ 2 }$
$\Rightarrow \cos ^{ 2 }{ { 15 }^{ ° }=\dfrac { 2+\sqrt { 3 } }{ 4 } }$ …(3)
Substituting equation. (3) in equation. (2) we get,
$I ={I}_{0}\times \dfrac { 2+\sqrt { 3 } }{ 4 } $
Thus, the intensity of the light transmitted by polarizer is ${ I }_{ 0 }\left( \dfrac { 2+\sqrt { 3 } }{ 4 } \right)$.
So, the correct answer is option A i.e. ${ I }_{ 0 }\left( \dfrac { 2+\sqrt { 3 } }{ 4 } \right)$.
Note:
If the $\theta$= 0 or 180°, then $I = {I}_{0}$. That is the intensity of transmitted light is maximum when transmission axes of analyzer and polarizer are parallel to each other. Initial intensity and initial after polarization remain the same.
If the $\theta$= 90°, then $I = 0$. That is the intensity of transmitted light is minimum when transmission axes of analyzer and polarizer are perpendicular to each other. The intensity of light after polarization becomes zero.
Formula used:
$I ={I}_{0} {\cos}^{2}{\theta}$
Complete answer:
Given: $\theta$ = 15°
Malus’s law is given by,
$I ={I}_{0} {\cos}^{2}{\theta}$ …(1)
Where, I is the intensity after polarization
${I}_{0}$ is the initial intensity
Substituting the value in above equation we get,
$I ={I}_{0}\times {\cos}^{2}{15°}$ …(2)
We know,
$\cos { { 15 }^{ ° } } =\cfrac { \sqrt { 2+\sqrt { 3 } } }{ 2 }$
$\Rightarrow \cos ^{ 2 }{ { 15 }^{ ° }=\dfrac { 2+\sqrt { 3 } }{ 4 } }$ …(3)
Substituting equation. (3) in equation. (2) we get,
$I ={I}_{0}\times \dfrac { 2+\sqrt { 3 } }{ 4 } $
Thus, the intensity of the light transmitted by polarizer is ${ I }_{ 0 }\left( \dfrac { 2+\sqrt { 3 } }{ 4 } \right)$.
So, the correct answer is option A i.e. ${ I }_{ 0 }\left( \dfrac { 2+\sqrt { 3 } }{ 4 } \right)$.
Note:
If the $\theta$= 0 or 180°, then $I = {I}_{0}$. That is the intensity of transmitted light is maximum when transmission axes of analyzer and polarizer are parallel to each other. Initial intensity and initial after polarization remain the same.
If the $\theta$= 90°, then $I = 0$. That is the intensity of transmitted light is minimum when transmission axes of analyzer and polarizer are perpendicular to each other. The intensity of light after polarization becomes zero.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

