
A piece of metal weighs 45 g in air and 25 g in a liquid of density \[1.5 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\] kept at \[30\;^\circ {\rm{C}}\]. When the temperature of the liquid is raised to \[40\;^\circ {\rm{C}}\] , the metal piece weighs 27 g. The density of liquid at \[40\;^\circ {\rm{C}}\] is \[1.25 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\]. The coefficient of linear expansion of metal is
A. \[1.3 \times {10^{ - 3}}\;/C\]
B. \[5.2 \times {10^{ - 3}}\;/C\]
C. \[2.6 \times {10^{ - 3}}\;/C\]
D. \[0.26 \times {10^{ - 3}}\;/C\]
Answer
578.7k+ views
Hint: The mathematical relation for the volume of metal at any specific temperature is used to resolve the problem. Moreover, the formula for coefficient of linear expansion of metal is also used.
Complete step by step answer:
Given:
Weight of metal in air is, \[{W_1} = 45\;{\rm{g}}\].
Weight of metal in liquid is, \[{W_2} = 25\;{\rm{g}}\].
The initial temperature is, \[{T_1} = 30\;{\rm{^\circ C}}\].
Density of liquid at \[30\;^\circ {\rm{C}}\] is, \[{\rho _1} = 1.5 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\]
The final temperature is, \[{T_2} = 40\;{\rm{^\circ C}}\].
Density of liquid at \[40\;^\circ {\rm{C}}\] is, \[{\rho _2} = 1.25 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\].
Weight of metal in liquid at \[40\;^\circ {\rm{C}}\] is, \[{W_3} = 27\;{\rm{g}}\].
The formula for the coefficient of linear expansion \[\left( \alpha \right)\] is given as,
\[\begin{array}{l}
{V_2} = {V_1}\left[ {1 + 3\alpha \left( {{T_2} - {T_1}} \right)} \right]\\
\dfrac{{{V_2}}}{{{V_1}}} = \left[ {1 + 3\alpha \left( {{T_2} - {T_1}} \right)} \right].........................................\left( 1 \right)
\end{array}\]
Here, \[{V_2}\] and \[{V_1}\] are the volume at \[30\;^\circ {\rm{C}}\] and \[40\;^\circ {\rm{C}}\] .
The ratio of \[{V_2}\] and \[{V_1}\] is given as,
\[\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{{W_1} - {W_3}}}{{{W_1} - {W_2}}}} \right) \times \dfrac{{{\rho _2}}}{{{\rho _1}}}\]
Substituting the values as,
\[\begin{array}{l}
\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{{W_1} - {W_3}}}{{{W_1} - {W_2}}}} \right) \times \dfrac{{{\rho _2}}}{{{\rho _1}}}\\
\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{45\;{\rm{g}} - 27\;{\rm{g}}}}{{45\;{\rm{g}} - 25\;{\rm{g}}}}} \right) \times \dfrac{{1.25 \times {{10}^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}}}{{1.5 \times {{10}^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}}}\\
\dfrac{{{V_2}}}{{{V_1}}} = 0.75
\end{array}\]
Solve by substituting the above value in equation 1 as,
\[\begin{array}{l}
\dfrac{{{V_2}}}{{{V_1}}} = \left[ {1 + 3a\left( {{T_2} - {T_1}} \right)} \right]\\
0.75 = 1 + 3 \times \alpha \left( {40\;{\rm{^\circ C}} - 30\;{\rm{^\circ C}}} \right)\\
\alpha = 2.6 \times {10^{ - 3}}\;/^\circ {\rm{C}}
\end{array}\]
Therefore, the required coefficient of linear expansion of metal is \[2.6 \times {10^{ - 3}}\;/{\rm{^\circ C}}\]
So, the correct answer is “Option C”.
Note:
The concept and the mathematical relation for the coefficient of linear expansion with the volume change is to be remembered. Moreover, the mathematical relation for the ratio of change in volume is to be known.
Complete step by step answer:
Given:
Weight of metal in air is, \[{W_1} = 45\;{\rm{g}}\].
Weight of metal in liquid is, \[{W_2} = 25\;{\rm{g}}\].
The initial temperature is, \[{T_1} = 30\;{\rm{^\circ C}}\].
Density of liquid at \[30\;^\circ {\rm{C}}\] is, \[{\rho _1} = 1.5 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\]
The final temperature is, \[{T_2} = 40\;{\rm{^\circ C}}\].
Density of liquid at \[40\;^\circ {\rm{C}}\] is, \[{\rho _2} = 1.25 \times {10^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}\].
Weight of metal in liquid at \[40\;^\circ {\rm{C}}\] is, \[{W_3} = 27\;{\rm{g}}\].
The formula for the coefficient of linear expansion \[\left( \alpha \right)\] is given as,
\[\begin{array}{l}
{V_2} = {V_1}\left[ {1 + 3\alpha \left( {{T_2} - {T_1}} \right)} \right]\\
\dfrac{{{V_2}}}{{{V_1}}} = \left[ {1 + 3\alpha \left( {{T_2} - {T_1}} \right)} \right].........................................\left( 1 \right)
\end{array}\]
Here, \[{V_2}\] and \[{V_1}\] are the volume at \[30\;^\circ {\rm{C}}\] and \[40\;^\circ {\rm{C}}\] .
The ratio of \[{V_2}\] and \[{V_1}\] is given as,
\[\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{{W_1} - {W_3}}}{{{W_1} - {W_2}}}} \right) \times \dfrac{{{\rho _2}}}{{{\rho _1}}}\]
Substituting the values as,
\[\begin{array}{l}
\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{{W_1} - {W_3}}}{{{W_1} - {W_2}}}} \right) \times \dfrac{{{\rho _2}}}{{{\rho _1}}}\\
\dfrac{{{V_2}}}{{{V_1}}} = \left( {\dfrac{{45\;{\rm{g}} - 27\;{\rm{g}}}}{{45\;{\rm{g}} - 25\;{\rm{g}}}}} \right) \times \dfrac{{1.25 \times {{10}^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}}}{{1.5 \times {{10}^3}\;{\rm{kg - }}{{\rm{m}}^{{\rm{ - 3}}}}}}\\
\dfrac{{{V_2}}}{{{V_1}}} = 0.75
\end{array}\]
Solve by substituting the above value in equation 1 as,
\[\begin{array}{l}
\dfrac{{{V_2}}}{{{V_1}}} = \left[ {1 + 3a\left( {{T_2} - {T_1}} \right)} \right]\\
0.75 = 1 + 3 \times \alpha \left( {40\;{\rm{^\circ C}} - 30\;{\rm{^\circ C}}} \right)\\
\alpha = 2.6 \times {10^{ - 3}}\;/^\circ {\rm{C}}
\end{array}\]
Therefore, the required coefficient of linear expansion of metal is \[2.6 \times {10^{ - 3}}\;/{\rm{^\circ C}}\]
So, the correct answer is “Option C”.
Note:
The concept and the mathematical relation for the coefficient of linear expansion with the volume change is to be remembered. Moreover, the mathematical relation for the ratio of change in volume is to be known.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

