
A person writes letters to his $5$ friends and addresses the corresponding envelopes. Number of ways in which the letters can be placed in the envelope, so that at least two of them are in the wrong envelopes?
Answer
522.4k+ views
Hint:At least two of them are in wrong envelopes means minimum two letters are in the wrong envelopes and maximum five letters are in the wrong envelope. Use the formula for number of ways in which at least two of them are in the wrong envelopes:
$\sum\limits_{r = 2}^5 {{}^n} {C_{n - r}}{D_r}$, here ${D_r} = r!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}}....\dfrac{1}{{r!}}} \right]$
Complete step-by-step answer:
We are given that a person writes letters to his $5$ friends and addresses the corresponding envelopes.
We have to evaluate the number of ways in which the letters can be placed in the envelope, so that at least two of them are in the wrong envelopes.
For this we use the following formula:
$\sum\limits_{r = 2}^5 {{}^n} {C_{n - r}}{D_r}$, here ${D_r} = r!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}}....\dfrac{1}{{r!}}} \right]$
The range of the summation is from $2$to $5$because at least two of them are in wrong envelopes means minimum two letters are in the wrong envelopes and maximum five letters are in the wrong envelope.
Expand the summation.
\[
\Rightarrow {}^5{C_{5 - 2}}{D_2} + {}^5{C_{5 - 3}}{D_3} + {}^5{C_{5 - 4}}{D_4} + {}^5{C_{5 - 5}}{D_5} \\
= {}^5{C_3}{D_2} + {}^5{C_2}{D_3} + {}^5{C_1}{D_4} + {}^5{C_0}{D_5} \\
\]
Use the formula ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$ to solve the expression.
\[ \Rightarrow \dfrac{{5!}}{{3!2!}}2!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}}} \right] + \dfrac{{5!}}{{3!2!}}3!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}} - \dfrac{1}{{3!}}} \right] + \dfrac{{5!}}{{1!4!}}4!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}} - \dfrac{1}{{3!}} + \dfrac{1}{{4!}}} \right] + \dfrac{{5!}}{{0!5!}}5!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}} - \dfrac{1}{{3!}} + \dfrac{1}{{4!}} - \dfrac{1}{{5!}}} \right]\]
Use the formula $n! = n(n - 1)(n - 1)....3 \times 2 \times 1$to solve the above expression.
\[
\Rightarrow \dfrac{{5 \times 4 \times 3 \times 2 \times 1}}{{3 \times 2 \times 1 \times 2 \times 1}}2 \times 1\left[ {1 - \dfrac{1}{1} + \dfrac{1}{{2 \times 1}}} \right] + \dfrac{{5 \times 4 \times 3 \times 2 \times 1}}{{3 \times 2 \times 1 \times 2 \times 1}}3 \times 2 \times 1\left[ {1 - \dfrac{1}{1} + \dfrac{1}{{2 \times 1}} - \dfrac{1}{{3 \times 2 \times 1}}} \right] \\
+ \dfrac{{5 \times 4 \times 3 \times 2 \times 1}}{{4 \times 3 \times 2 \times 1}}4 \times 3 \times 2 \times 1\left[ {1 - \dfrac{1}{1} + \dfrac{1}{{2 \times 1}} - \dfrac{1}{{3 \times 2 \times 1}} + \dfrac{1}{{4 \times 3 \times 2 \times 1}}} \right] + \dfrac{{5 \times 4 \times 3 \times 2 \times 1}}{{5 \times 4 \times 3 \times 2 \times 1}}5 \times 4 \times 3 \times 2 \times 1\left[ {1 - \dfrac{1}{1} + \dfrac{1}{{2 \times 1}} - \dfrac{1}{{3 \times 2 \times 1}} + \dfrac{1}{{4 \times 3 \times 2 \times 1}} - \dfrac{1}{{5 \times 4 \times 3 \times 2 \times 1}}} \right] \\
\]
$ = 20\left[ {\dfrac{1}{2}} \right] + 60\left[ {\dfrac{1}{2} - \dfrac{1}{6}} \right] + 120\left[ {\dfrac{1}{2} - \dfrac{1}{6} + \dfrac{1}{{24}}} \right] + 120\left[ {\dfrac{1}{2} - \dfrac{1}{6} + \dfrac{1}{{24}} - \dfrac{1}{{120}}} \right]$
\[
= 10 + 60\left[ {\dfrac{{3 - 1}}{6}} \right] + 120\left[ {\dfrac{{12 - 4 + 1}}{{24}}} \right] + 120\left[ {\dfrac{{60 - 20 + 5 - 1}}{{120}}} \right] \\
= 10 + 20 + 45 + 44 \\
= 119 \\
\]
Hence, Number of ways in which the letters can be placed in the envelope, so that at least two of them are in the wrong envelopes is $119$.
Note:
The difference between at least and at most is:
At least $2$ events mean the minimum number of events are $2$ and at most $2$ events means maximum number of events are $2$.
$\sum\limits_{r = 2}^5 {{}^n} {C_{n - r}}{D_r}$, here ${D_r} = r!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}}....\dfrac{1}{{r!}}} \right]$
Complete step-by-step answer:
We are given that a person writes letters to his $5$ friends and addresses the corresponding envelopes.
We have to evaluate the number of ways in which the letters can be placed in the envelope, so that at least two of them are in the wrong envelopes.
For this we use the following formula:
$\sum\limits_{r = 2}^5 {{}^n} {C_{n - r}}{D_r}$, here ${D_r} = r!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}}....\dfrac{1}{{r!}}} \right]$
The range of the summation is from $2$to $5$because at least two of them are in wrong envelopes means minimum two letters are in the wrong envelopes and maximum five letters are in the wrong envelope.
Expand the summation.
\[
\Rightarrow {}^5{C_{5 - 2}}{D_2} + {}^5{C_{5 - 3}}{D_3} + {}^5{C_{5 - 4}}{D_4} + {}^5{C_{5 - 5}}{D_5} \\
= {}^5{C_3}{D_2} + {}^5{C_2}{D_3} + {}^5{C_1}{D_4} + {}^5{C_0}{D_5} \\
\]
Use the formula ${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$ to solve the expression.
\[ \Rightarrow \dfrac{{5!}}{{3!2!}}2!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}}} \right] + \dfrac{{5!}}{{3!2!}}3!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}} - \dfrac{1}{{3!}}} \right] + \dfrac{{5!}}{{1!4!}}4!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}} - \dfrac{1}{{3!}} + \dfrac{1}{{4!}}} \right] + \dfrac{{5!}}{{0!5!}}5!\left[ {1 - \dfrac{1}{{1!}} + \dfrac{1}{{2!}} - \dfrac{1}{{3!}} + \dfrac{1}{{4!}} - \dfrac{1}{{5!}}} \right]\]
Use the formula $n! = n(n - 1)(n - 1)....3 \times 2 \times 1$to solve the above expression.
\[
\Rightarrow \dfrac{{5 \times 4 \times 3 \times 2 \times 1}}{{3 \times 2 \times 1 \times 2 \times 1}}2 \times 1\left[ {1 - \dfrac{1}{1} + \dfrac{1}{{2 \times 1}}} \right] + \dfrac{{5 \times 4 \times 3 \times 2 \times 1}}{{3 \times 2 \times 1 \times 2 \times 1}}3 \times 2 \times 1\left[ {1 - \dfrac{1}{1} + \dfrac{1}{{2 \times 1}} - \dfrac{1}{{3 \times 2 \times 1}}} \right] \\
+ \dfrac{{5 \times 4 \times 3 \times 2 \times 1}}{{4 \times 3 \times 2 \times 1}}4 \times 3 \times 2 \times 1\left[ {1 - \dfrac{1}{1} + \dfrac{1}{{2 \times 1}} - \dfrac{1}{{3 \times 2 \times 1}} + \dfrac{1}{{4 \times 3 \times 2 \times 1}}} \right] + \dfrac{{5 \times 4 \times 3 \times 2 \times 1}}{{5 \times 4 \times 3 \times 2 \times 1}}5 \times 4 \times 3 \times 2 \times 1\left[ {1 - \dfrac{1}{1} + \dfrac{1}{{2 \times 1}} - \dfrac{1}{{3 \times 2 \times 1}} + \dfrac{1}{{4 \times 3 \times 2 \times 1}} - \dfrac{1}{{5 \times 4 \times 3 \times 2 \times 1}}} \right] \\
\]
$ = 20\left[ {\dfrac{1}{2}} \right] + 60\left[ {\dfrac{1}{2} - \dfrac{1}{6}} \right] + 120\left[ {\dfrac{1}{2} - \dfrac{1}{6} + \dfrac{1}{{24}}} \right] + 120\left[ {\dfrac{1}{2} - \dfrac{1}{6} + \dfrac{1}{{24}} - \dfrac{1}{{120}}} \right]$
\[
= 10 + 60\left[ {\dfrac{{3 - 1}}{6}} \right] + 120\left[ {\dfrac{{12 - 4 + 1}}{{24}}} \right] + 120\left[ {\dfrac{{60 - 20 + 5 - 1}}{{120}}} \right] \\
= 10 + 20 + 45 + 44 \\
= 119 \\
\]
Hence, Number of ways in which the letters can be placed in the envelope, so that at least two of them are in the wrong envelopes is $119$.
Note:
The difference between at least and at most is:
At least $2$ events mean the minimum number of events are $2$ and at most $2$ events means maximum number of events are $2$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

