
A person by selling an article for the Rs.\[450\], loses \[20\% \]. In order to make a profit of \[20\% \] what is the price at which he must sell?
A. Rs.\[500\]
B. Rs.\[475\]
C. Rs.\[575\]
D. Rs.\[675\]
Answer
574.2k+ views
Hint: Selling Price (S.P.) is the price at which article is sold and Cost Price (C.P.) is the price at which article is bought.
If ${\text{S}}{\text{.P}}{\text{. > C}}{\text{.P}}{\text{.}}$then the seller earn profit.
Such that \[{\text{profit = S}}{\text{.P}}{\text{. - C}}{\text{.P}}{\text{.}}\]
\[{\text{profit% = }}\dfrac{{{\text{profit}}}}{{{\text{C}}{\text{.P}}{\text{.}}}}{\text{x 100}}\]
If ${\text{S}}{\text{.P}}{\text{. < C}}{\text{.P}}{\text{.}}$then the seller incurred loss
Such that \[{\text{loss = C}}{\text{.P}}{\text{. - S}}{\text{.P}}{\text{.}}\]
\[{\text{loss% = }}\dfrac{{{\text{loss}}}}{{{\text{C}}{\text{.P}}{\text{.}}}}{\text{ times 100}}\]
Complete step by step solution:
Given that S.P. of the article is the Rs.\[450\] Incurred the loss of \[20\% \]
Need to find S.P of the article to earn profit of \[20\% \]
Step1 :
Finding C.P. of the article
Let C.P of the article be Rs.\[100\]
Since the person sold it at \[20\% \]loss.
We know that $loss\%\;=\;{\dfrac{loss}{C.P}}\times\;100$
$loss\;={\dfrac{loss\%\times{C.P}}{100}}$
Substituting the value
\[{\text{loss% = 20% }}\] & C.P.= Rs.\[100\]
$loss\;={\dfrac{20\times{100}}{100}}$
\[ \Rightarrow {\text{loss = Rs}}.20\]
And when there is loss
\[{\text{loss = C}}{\text{.P}}{\text{. - S}}{\text{.P}}{\text{.}}\]
\[ \Rightarrow {\text{S}}{\text{.P}}{\text{. = C}}{\text{.P}}{\text{. - }}{\kern 1pt} {\kern 1pt} {\text{loss}}\]
\[ \Rightarrow {\text{S}}{\text{.P}}. = 100 - 20 = 80\]
Using a unitary method we find the original C.P.
When S.P. = Rs.\[80\] at \[20\% \]loss , C.P.= Rs.\[100\]
And for S.P. = Rs.\[1\] at \[20\% \]loss, C.P. = Rs.\[\dfrac{{100}}{{80}}\]
Hence when S.P. = Rs.\[450\]at \[20\% \]loss , C.P = Rs\[\dfrac{{100}}{{80}} \times 450 = 562.5\].
Step 2:
Now finding amount of profit if article is sold at \[20\% \]profit
Since, $Profit\%\;=\;{\dfrac{Profit}{C.P}}\times\;100$
$loss\;={\dfrac{loss\%\times{C.P}}{100}}$
Substituting
\[{\text{profit% = 20% }}\]
\[\begin{gathered}
\Rightarrow {\text{profit}} = \dfrac{{(20 \times 562.5)}}{{100}} \\
\\
\end{gathered} \]
\[\begin{gathered}
\Rightarrow {\text{profit}} = \dfrac{{(20 \times 562.5)}}{{100}} \\
\\
\end{gathered} \]
\[{\text{profit = }}\dfrac{{562.5}}{5} = 112.5\]
\[{\text{profit}} = {\text{Rs}}.112.5\]
So the profit seller earn is Rs.\[112.5\]
Step 3:
Finding the required S.P. of the article,when earning profit of Rs.\[112.5\]
Since \[{\text{profit = S}}{\text{.P}}{\text{. - C}}{\text{.P}}{\text{.}}\]
\[ \Rightarrow {\text{S}}{\text{.P}}{\text{. = profit + C}}{\text{.P}}.\]
\[ \Rightarrow {\text{S}}{\text{.P}}{\text{. = 112}}{\text{.5 + 562}}{\text{.5}}\]
\[ \Rightarrow {\text{S}}{\text{.P}}{\text{. = 675}}\]
Hence the S.P. of the article is Rs.\[675\]. And the correct option is (D) Rs.\[675\].
Note: Discount is another factor used applied on marked price (marked in article to sell). This is a reduction in price offered on marked price.
If ${\text{S}}{\text{.P}}{\text{. > C}}{\text{.P}}{\text{.}}$then the seller earn profit.
Such that \[{\text{profit = S}}{\text{.P}}{\text{. - C}}{\text{.P}}{\text{.}}\]
\[{\text{profit% = }}\dfrac{{{\text{profit}}}}{{{\text{C}}{\text{.P}}{\text{.}}}}{\text{x 100}}\]
If ${\text{S}}{\text{.P}}{\text{. < C}}{\text{.P}}{\text{.}}$then the seller incurred loss
Such that \[{\text{loss = C}}{\text{.P}}{\text{. - S}}{\text{.P}}{\text{.}}\]
\[{\text{loss% = }}\dfrac{{{\text{loss}}}}{{{\text{C}}{\text{.P}}{\text{.}}}}{\text{ times 100}}\]
Complete step by step solution:
Given that S.P. of the article is the Rs.\[450\] Incurred the loss of \[20\% \]
Need to find S.P of the article to earn profit of \[20\% \]
Step1 :
Finding C.P. of the article
Let C.P of the article be Rs.\[100\]
Since the person sold it at \[20\% \]loss.
We know that $loss\%\;=\;{\dfrac{loss}{C.P}}\times\;100$
$loss\;={\dfrac{loss\%\times{C.P}}{100}}$
Substituting the value
\[{\text{loss% = 20% }}\] & C.P.= Rs.\[100\]
$loss\;={\dfrac{20\times{100}}{100}}$
\[ \Rightarrow {\text{loss = Rs}}.20\]
And when there is loss
\[{\text{loss = C}}{\text{.P}}{\text{. - S}}{\text{.P}}{\text{.}}\]
\[ \Rightarrow {\text{S}}{\text{.P}}{\text{. = C}}{\text{.P}}{\text{. - }}{\kern 1pt} {\kern 1pt} {\text{loss}}\]
\[ \Rightarrow {\text{S}}{\text{.P}}. = 100 - 20 = 80\]
Using a unitary method we find the original C.P.
When S.P. = Rs.\[80\] at \[20\% \]loss , C.P.= Rs.\[100\]
And for S.P. = Rs.\[1\] at \[20\% \]loss, C.P. = Rs.\[\dfrac{{100}}{{80}}\]
Hence when S.P. = Rs.\[450\]at \[20\% \]loss , C.P = Rs\[\dfrac{{100}}{{80}} \times 450 = 562.5\].
Step 2:
Now finding amount of profit if article is sold at \[20\% \]profit
Since, $Profit\%\;=\;{\dfrac{Profit}{C.P}}\times\;100$
$loss\;={\dfrac{loss\%\times{C.P}}{100}}$
Substituting
\[{\text{profit% = 20% }}\]
\[\begin{gathered}
\Rightarrow {\text{profit}} = \dfrac{{(20 \times 562.5)}}{{100}} \\
\\
\end{gathered} \]
\[\begin{gathered}
\Rightarrow {\text{profit}} = \dfrac{{(20 \times 562.5)}}{{100}} \\
\\
\end{gathered} \]
\[{\text{profit = }}\dfrac{{562.5}}{5} = 112.5\]
\[{\text{profit}} = {\text{Rs}}.112.5\]
So the profit seller earn is Rs.\[112.5\]
Step 3:
Finding the required S.P. of the article,when earning profit of Rs.\[112.5\]
Since \[{\text{profit = S}}{\text{.P}}{\text{. - C}}{\text{.P}}{\text{.}}\]
\[ \Rightarrow {\text{S}}{\text{.P}}{\text{. = profit + C}}{\text{.P}}.\]
\[ \Rightarrow {\text{S}}{\text{.P}}{\text{. = 112}}{\text{.5 + 562}}{\text{.5}}\]
\[ \Rightarrow {\text{S}}{\text{.P}}{\text{. = 675}}\]
Hence the S.P. of the article is Rs.\[675\]. And the correct option is (D) Rs.\[675\].
Note: Discount is another factor used applied on marked price (marked in article to sell). This is a reduction in price offered on marked price.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE


