
A perpendicular is drawn from a point lying on $\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1}$ to the plane x + y + z = 3 such that the foot of the perpendicular Q lies on the plane x – y + z = 3. Then the coordinate of Q are
( a ) ( 2, 0, 1 )
( b ) ( 4, 0, -1 )
( c ) ( -1, 0, 4 )
( d ) ( 1, 0, 2 )
Answer
590.1k+ views
Hint: Firstly we will find the general point on line $\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1}=k$ in terms of k and then using concept of perpendicular line and plane condition that is \[\dfrac{{{x}_{1}}-{{x}_{2}}}{a}=\dfrac{{{y}_{1}}-{{y}_{2}}}{b}=\dfrac{{{z}_{1}}-{{z}_{2}}}{c}=-\dfrac{(a{{x}_{2}}+b{{y}_{2}}+c{{z}_{2}}+d)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\], we will find coordinates of Q in terms of k and then we will find value of k by putting coordinates of Q in equation x – y + z = 3, then we will substitute values of k in coordinates of Q in terms of k to get numerical coordinates of Q
Complete step-by-step answer:
We know that, the standard form of equation $\dfrac{x-a}{d}=\dfrac{y-b}{e}=\dfrac{z-c}{f}$, where d, e, f are direction ratios and ( a, b, c ) lying on line.
Now, we are given that perpendicular is drawn from a point lying on $\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1}$ to the plane x + y + z = 3 such that the foot of the perpendicular Q lies on the plane x – y + z = 3.
So, let point P be the point on line $\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1}=k$, then coordinates of the point P of form P( 2k + 1, -k – 1, k ) where, we have point x =2k + 1, y = -k – 1, z = k .
Now, as PQ is the perpendicular where Q lies on the plane x + y +z = 3
So, let coordinates of Q be $Q\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$
Now, if line AB and plane ax + by + cz + d = 0 are perpendicular then, we have
\[\dfrac{{{x}_{1}}-{{x}_{2}}}{a}=\dfrac{{{y}_{1}}-{{y}_{2}}}{b}=\dfrac{{{z}_{1}}-{{z}_{2}}}{c}=-\dfrac{(a{{x}_{2}}+b{{y}_{2}}+c{{z}_{2}}+d)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\], where (\[{{x}_{1}}\],\[{{y}_{1}}\],\[{{z}_{1}}\]) is coordinate of point B on both plane and straight line and (\[{{x}_{2}}\],\[{{y}_{2}}\],\[{{z}_{2}}\]) is coordinate of point A.
Now, as line PQ and equation of plane are perpendicular to each other so, we can say that
\[\dfrac{{{x}_{1}}-2k-1}{1}=\dfrac{{{y}_{1}}+k+1}{1}=\dfrac{{{z}_{1}}+k}{1}=-\dfrac{(2k\text{ }+\text{ }1+(-k\text{ }1)+k)}{{{1}^{2}}+{{1}^{2}}+{{1}^{2}}}\], where \[{{x}_{1}}\],\[{{y}_{1}}\],\[{{z}_{1}}\] are coordinates of Q and \[{{x}_{2}}+{{y}_{2}}+{{z}_{2}}-3\]is equation plane to which line PQ are perpendicular.
On solving we get,
\[\dfrac{{{x}_{1}}-2k-1}{1}=\dfrac{{{y}_{1}}+k+1}{1}=\dfrac{{{z}_{1}}+k}{1}=\dfrac{3-2k}{3}\]
Now, comparing x coordinate of Q, we get
\[\dfrac{{{x}_{1}}-2k-1}{1}=\dfrac{3-2k}{3}\]
On solving we get,
\[{{x}_{1}}=\dfrac{6+4k}{3}\]
Now, comparing y coordinate of Q, we get
\[\dfrac{{{y}_{1}}+k+1}{1}=\dfrac{3-2k}{3}\]
On solving we get,
\[{{y}_{1}}=-\dfrac{5k}{3}\]
Now, comparing y coordinate of Q, we get
\[\dfrac{{{z}_{1}}+k}{1}=\dfrac{3-2k}{3}\]
On solving we get,
\[{{z}_{1}}=\dfrac{3+k}{3}\]
So, we have $Q\left( \dfrac{6+4k}{3},-\dfrac{5k}{3},\dfrac{3+k}{3} \right)$ as \[{{x}_{1}}\],\[{{y}_{1}}\],\[{{z}_{1}}\] are coordinates of Q.
Now, as point Q lies on plane x - y + z = 3, so point Q will satisfy the equation plane, then
$\dfrac{6+4k}{3}-\left( -\dfrac{5k}{3} \right)+\dfrac{3+k}{3}=3$
On solving we get
6 + 4k + 5k + 3 + k = 9
Or, k = 0
So, coordinates of Q will be $Q\left( \dfrac{6+4(0)}{3},-\dfrac{5(0)}{3},\dfrac{3+(0)}{3} \right)$
Or, Q(2, 0, 1 )
So, the correct answer is “Option A”.
Note: Always convert the equation of line firstly to standard line equation which is $\dfrac{x-a}{d}=\dfrac{y-b}{e}=\dfrac{z-c}{f}$, where d, e, f are direction ratios and ( a, b, c ) lying on line. Also, remember that if line AB and plane ax + by + cz + d = 0 are perpendicular then, we have
\[\dfrac{{{x}_{1}}-{{x}_{2}}}{a}=\dfrac{{{y}_{1}}-{{y}_{2}}}{b}=\dfrac{{{z}_{1}}-{{z}_{2}}}{c}=-\dfrac{(a{{x}_{2}}+b{{y}_{2}}+c{{z}_{2}}+d)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\], where (\[{{x}_{1}}\],\[{{y}_{1}}\],\[{{z}_{1}}\]) is coordinate of point B on both plane and straight line and (\[{{x}_{2}}\],\[{{y}_{2}}\],\[{{z}_{2}}\]) is coordinate of point A. Avoid calculation error while solving the question.
Complete step-by-step answer:
We know that, the standard form of equation $\dfrac{x-a}{d}=\dfrac{y-b}{e}=\dfrac{z-c}{f}$, where d, e, f are direction ratios and ( a, b, c ) lying on line.
Now, we are given that perpendicular is drawn from a point lying on $\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1}$ to the plane x + y + z = 3 such that the foot of the perpendicular Q lies on the plane x – y + z = 3.
So, let point P be the point on line $\dfrac{x-1}{2}=\dfrac{y+1}{-1}=\dfrac{z}{1}=k$, then coordinates of the point P of form P( 2k + 1, -k – 1, k ) where, we have point x =2k + 1, y = -k – 1, z = k .
Now, as PQ is the perpendicular where Q lies on the plane x + y +z = 3
So, let coordinates of Q be $Q\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$
Now, if line AB and plane ax + by + cz + d = 0 are perpendicular then, we have
\[\dfrac{{{x}_{1}}-{{x}_{2}}}{a}=\dfrac{{{y}_{1}}-{{y}_{2}}}{b}=\dfrac{{{z}_{1}}-{{z}_{2}}}{c}=-\dfrac{(a{{x}_{2}}+b{{y}_{2}}+c{{z}_{2}}+d)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\], where (\[{{x}_{1}}\],\[{{y}_{1}}\],\[{{z}_{1}}\]) is coordinate of point B on both plane and straight line and (\[{{x}_{2}}\],\[{{y}_{2}}\],\[{{z}_{2}}\]) is coordinate of point A.
Now, as line PQ and equation of plane are perpendicular to each other so, we can say that
\[\dfrac{{{x}_{1}}-2k-1}{1}=\dfrac{{{y}_{1}}+k+1}{1}=\dfrac{{{z}_{1}}+k}{1}=-\dfrac{(2k\text{ }+\text{ }1+(-k\text{ }1)+k)}{{{1}^{2}}+{{1}^{2}}+{{1}^{2}}}\], where \[{{x}_{1}}\],\[{{y}_{1}}\],\[{{z}_{1}}\] are coordinates of Q and \[{{x}_{2}}+{{y}_{2}}+{{z}_{2}}-3\]is equation plane to which line PQ are perpendicular.
On solving we get,
\[\dfrac{{{x}_{1}}-2k-1}{1}=\dfrac{{{y}_{1}}+k+1}{1}=\dfrac{{{z}_{1}}+k}{1}=\dfrac{3-2k}{3}\]
Now, comparing x coordinate of Q, we get
\[\dfrac{{{x}_{1}}-2k-1}{1}=\dfrac{3-2k}{3}\]
On solving we get,
\[{{x}_{1}}=\dfrac{6+4k}{3}\]
Now, comparing y coordinate of Q, we get
\[\dfrac{{{y}_{1}}+k+1}{1}=\dfrac{3-2k}{3}\]
On solving we get,
\[{{y}_{1}}=-\dfrac{5k}{3}\]
Now, comparing y coordinate of Q, we get
\[\dfrac{{{z}_{1}}+k}{1}=\dfrac{3-2k}{3}\]
On solving we get,
\[{{z}_{1}}=\dfrac{3+k}{3}\]
So, we have $Q\left( \dfrac{6+4k}{3},-\dfrac{5k}{3},\dfrac{3+k}{3} \right)$ as \[{{x}_{1}}\],\[{{y}_{1}}\],\[{{z}_{1}}\] are coordinates of Q.
Now, as point Q lies on plane x - y + z = 3, so point Q will satisfy the equation plane, then
$\dfrac{6+4k}{3}-\left( -\dfrac{5k}{3} \right)+\dfrac{3+k}{3}=3$
On solving we get
6 + 4k + 5k + 3 + k = 9
Or, k = 0
So, coordinates of Q will be $Q\left( \dfrac{6+4(0)}{3},-\dfrac{5(0)}{3},\dfrac{3+(0)}{3} \right)$
Or, Q(2, 0, 1 )
So, the correct answer is “Option A”.
Note: Always convert the equation of line firstly to standard line equation which is $\dfrac{x-a}{d}=\dfrac{y-b}{e}=\dfrac{z-c}{f}$, where d, e, f are direction ratios and ( a, b, c ) lying on line. Also, remember that if line AB and plane ax + by + cz + d = 0 are perpendicular then, we have
\[\dfrac{{{x}_{1}}-{{x}_{2}}}{a}=\dfrac{{{y}_{1}}-{{y}_{2}}}{b}=\dfrac{{{z}_{1}}-{{z}_{2}}}{c}=-\dfrac{(a{{x}_{2}}+b{{y}_{2}}+c{{z}_{2}}+d)}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\], where (\[{{x}_{1}}\],\[{{y}_{1}}\],\[{{z}_{1}}\]) is coordinate of point B on both plane and straight line and (\[{{x}_{2}}\],\[{{y}_{2}}\],\[{{z}_{2}}\]) is coordinate of point A. Avoid calculation error while solving the question.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

