
A passenger train takes one hour less for a journey of 150km if its speed is increased by 5km/hr from its usual speed. The usual speed of the train is …………… km/hr.
Answer
596.7k+ views
Hint- For solving such types of questions we need to let the speed of the vehicle and form an equation and then find the value of the quantity.
Complete step by step answer:
Let the usual speed of train be x km/hr, then
Time taken to cover the journey with usual speed=$\dfrac{{{\text{distance}}}}{{speed}}$=$\dfrac{{150}}{x}$ hr
On increasing the speed by 5km/hr, new speed=(x+5)km/hr
Therefore, time taken to complete the journey=$\dfrac{{{\text{distance}}}}{{speed}}$= $\dfrac{{150}}{{x + 5}}$ hr
According to question,
(Time taken at usual speed)- (Time taken at new speed)=1 hr
$
\dfrac{{150}}{x} - \dfrac{{150}}{{x + 5}} = 1 \\
150(\dfrac{1}{x} - \dfrac{1}{{x + 5}}) = 1 \\
150(\dfrac{{(x + 5) - (x)}}{{x.(x + 5)}}) = 1 \\
150(\dfrac{5}{{x.(x + 5)}}) = 1 \\
150 \times 5 = x.(x + 5) \\
{x^2} + 5x - 750 = 0 \\
{x^2} + 30x - 25x - 750 = 0 \\
x(x + 30) - 25(x + 30) = 0 \\
(x - 25)(x + 30) = 0 \\
x = 25, - 30 \\
$
The usual speed of the train is 25km/hr. (As speed can never be negative)
Hence the answer to this question is 25 km/hr.
Note- For this question we need to let the speed of the train and find the usual conditions and the new conditions after change in the speed of the train and then solve the relation to get the desired quantity.
Complete step by step answer:
Let the usual speed of train be x km/hr, then
Time taken to cover the journey with usual speed=$\dfrac{{{\text{distance}}}}{{speed}}$=$\dfrac{{150}}{x}$ hr
On increasing the speed by 5km/hr, new speed=(x+5)km/hr
Therefore, time taken to complete the journey=$\dfrac{{{\text{distance}}}}{{speed}}$= $\dfrac{{150}}{{x + 5}}$ hr
According to question,
(Time taken at usual speed)- (Time taken at new speed)=1 hr
$
\dfrac{{150}}{x} - \dfrac{{150}}{{x + 5}} = 1 \\
150(\dfrac{1}{x} - \dfrac{1}{{x + 5}}) = 1 \\
150(\dfrac{{(x + 5) - (x)}}{{x.(x + 5)}}) = 1 \\
150(\dfrac{5}{{x.(x + 5)}}) = 1 \\
150 \times 5 = x.(x + 5) \\
{x^2} + 5x - 750 = 0 \\
{x^2} + 30x - 25x - 750 = 0 \\
x(x + 30) - 25(x + 30) = 0 \\
(x - 25)(x + 30) = 0 \\
x = 25, - 30 \\
$
The usual speed of the train is 25km/hr. (As speed can never be negative)
Hence the answer to this question is 25 km/hr.
Note- For this question we need to let the speed of the train and find the usual conditions and the new conditions after change in the speed of the train and then solve the relation to get the desired quantity.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

The time gap between two sessions of the Parliament class 10 social science CBSE

