
A particle of mass m with charge q moving with a uniform speed v normal to a uniform magnetic field B. Derive the expression for (i) radius of the circular path, (ii)time-period of revolution, and (ii) kinetic energy of the particle.?
Answer
586.8k+ views
Hint: We all know that when a charged particle moves in a magnetic field, a magnetic force acts on a particle, and the particle deflects occasional, and the magnitude of the magnetic force depends on the charge of the particle, speed of the particle and the Intensity of magnetic field.
Complete step by step solution:
The centripetal force balances the magnetic force acting on a moving particle perpendicular to its motion. We can write the equilibrium formula as,
$F = {F_c}$ …… (I)
Here, $F$ is the force on a charged particle ${F_c}$ is the centripetal force. We know that F is the force on a charged particle in a magnetic field and is given by,
$F = qvB$
Here q is the charge, v is the velocity of the particle, and B is the magnetic field.
The centripetal force is given by,
${F_c} = \dfrac{{m{v^2}}}{r}$
Here m is the mass of the particle, v is the velocity of the particle, and r is the radius.
We will now substitute ${F_c} = \dfrac{{m{v^2}}}{r}$ $F = qvB$ in equation (I) to find the value of r.
$\begin{array}{l}
qvB = \dfrac{{m{v^2}}}{r}\\
r = \dfrac{{mv}}{{qB}}
\end{array}$
We know that the period of revolution is given by,
\[T = \dfrac{{2\pi r}}{v}\] …… (II)
Here r is the radius, and v is the velocity of the particle.
We will now substitute \[r = \dfrac{{mv}}{{qB}}\] in equation (II) to find the value of T.
\[\begin{array}{l}
T = \dfrac{{2\pi }}{v}\left( {\dfrac{{mv}}{{qB}}} \right)\\
T = \dfrac{{2\pi m}}{{qB}}
\end{array}\]
The kinetic energy $E$ on the particle will remain equal to $\dfrac{{m{v^2}}}{2}$ as the particle is under the same field moving with velocity v.
Note: The force on a particle acts when there is some relative motion between the particle and magnetic field. Suppose the magnetic field and the particle are moving at the same speed, then the force acting on the particle is zero.
Complete step by step solution:
The centripetal force balances the magnetic force acting on a moving particle perpendicular to its motion. We can write the equilibrium formula as,
$F = {F_c}$ …… (I)
Here, $F$ is the force on a charged particle ${F_c}$ is the centripetal force. We know that F is the force on a charged particle in a magnetic field and is given by,
$F = qvB$
Here q is the charge, v is the velocity of the particle, and B is the magnetic field.
The centripetal force is given by,
${F_c} = \dfrac{{m{v^2}}}{r}$
Here m is the mass of the particle, v is the velocity of the particle, and r is the radius.
We will now substitute ${F_c} = \dfrac{{m{v^2}}}{r}$ $F = qvB$ in equation (I) to find the value of r.
$\begin{array}{l}
qvB = \dfrac{{m{v^2}}}{r}\\
r = \dfrac{{mv}}{{qB}}
\end{array}$
We know that the period of revolution is given by,
\[T = \dfrac{{2\pi r}}{v}\] …… (II)
Here r is the radius, and v is the velocity of the particle.
We will now substitute \[r = \dfrac{{mv}}{{qB}}\] in equation (II) to find the value of T.
\[\begin{array}{l}
T = \dfrac{{2\pi }}{v}\left( {\dfrac{{mv}}{{qB}}} \right)\\
T = \dfrac{{2\pi m}}{{qB}}
\end{array}\]
The kinetic energy $E$ on the particle will remain equal to $\dfrac{{m{v^2}}}{2}$ as the particle is under the same field moving with velocity v.
Note: The force on a particle acts when there is some relative motion between the particle and magnetic field. Suppose the magnetic field and the particle are moving at the same speed, then the force acting on the particle is zero.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

