
When a particle of mass \[m\] moves on the x-axis in a potential of the form \[V\left( x \right)=k{{x}^{2}}\], it performs simple harmonic motion. The corresponding time period is proportional to \[\sqrt{\dfrac{m}{k}}\], as can be seen easily using dimensional analysis. However, the motion of a particle can be periodic even when its potential energy increases on both sides of \[x=0\] in a way different from \[k{{x}^{2}}\] and its total energy is such that the particle does not escape to infinity. Consider a particle of mass \[m\] moving on the x-axis. Its potential energy is \[V\left( x \right)=\alpha {{x}^{4}}\] \[\left( \alpha >0 \right)\]for \[\left| x \right|\]near the origin and becomes a constant equal to \[{{V}_{0}}\] for \[\left| x \right|\ge {{x}_{0}}\] (see figure).
For periodic motion of small amplitude \[A\], the time period \[T\] of this particle is proportional to:
\[A)A\sqrt{\dfrac{m}{\alpha }}\]
\[B)\dfrac{1}{A}\sqrt{\dfrac{m}{\alpha }}\]
\[C)A\sqrt{\dfrac{\alpha }{m}}\]
\[D)A\sqrt{\dfrac{2\alpha }{m}}\]
Answer
556.5k+ views
Hint: Using dimensional analysis we can solve this question. Here, we have the same three variables in all four options, i.e., \[\text{A, }\!\!\alpha\!\!\text{ and m}\]. Find the dimension of each variable, and check options one by one to see which one has the same dimension as time period.
Formula used:
\[P.E=mgh\]
Complete step by step answer:
Using dimensional analysis, we can solve this question.
Dimension of time period, \[\left[ T \right]=\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}} \right]\]
Now,
Let’s find out the dimension of \[\text{ }\!\!\alpha\!\!\text{ }\].
Given that,
\[V\left( x \right)=\alpha {{x}^{4}}\],\[\left( \alpha >0 \right)\] ---- 1
From equation 1, we get,
\[\alpha =\dfrac{V\left( x \right)}{{{x}^{4}}}\]
Here\[V\left( x \right)\]is potential energy and \[x\]indicates length.
Let’s find the dimensions of potential energy and length.
Potential energy, \[P.E=mgh\] -------1
Where,
\[m\] is the mass of the object
\[g\] is the acceleration due to gravity
\[h\] is the height
We have,
\[\left[ m \right]=\left[ {{M}^{1}} \right]\]
\[\left[ g \right]=\left[ {{M}^{0}}{{L}^{1}}{{T}^{2}} \right]\]
\[\left[ h \right]=\left[ {{L}^{1}} \right]\]
Substitute dimensions of \[\text{m,g and h}\] in equation 1. We get,
\[\left[ P.E \right]=\left[ {{M}^{1}} \right]\times \left[ {{M}^{0}}{{L}^{1}}{{T}^{2}} \right]\times \left[ {{L}^{1}} \right]=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]\]
Dimension of length, \[{{\left[ x \right]}^{4}}={{\left[ {{M}^{0}}{{L}^{1}}{{T}^{0}} \right]}^{4}}=\left[ {{M}^{0}}{{L}^{4}}{{T}^{0}} \right]\]
Then,
\[\dfrac{V\left( x \right)}{{{x}^{4}}}=\dfrac{\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]}{\left[ {{M}^{0}}{{L}^{4}}{{T}^{0}} \right]}=\left[ {{M}^{1}}{{L}^{-2}}{{T}^{-2}} \right]\]
\[\left[ \alpha \right]=\left[ {{M}^{1}}{{L}^{-2}}{{T}^{-2}} \right]\]
Here, \[A\]is amplitude. Then, \[\left[ A \right]=\left[ {{L}^{1}} \right]\]
We have, \[\left[ m \right]=\left[ {{M}^{1}} \right]\]
Then, checking options we can see that the dimension of the equation in the third option has the same dimension as the time period.
\[\left[ \dfrac{1}{A}\sqrt{\dfrac{m}{\alpha }} \right]=\dfrac{1}{\left[ {{L}^{1}} \right]}\times \dfrac{{{\left( \left[ {{M}^{1}} \right] \right)}^{\dfrac{1}{2}}}}{{{\left( \left[ {{M}^{1}}{{L}^{-2}}{{T}^{-2}} \right] \right)}^{\dfrac{1}{2}}}}=\dfrac{\left[ {{M}^{\dfrac{1}{2}}}{{L}^{0}}{{T}^{0}} \right]}{\left[ {{M}^{\dfrac{1}{2}}}{{L}^{0}}{{T}^{-1}} \right]}=\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}} \right]\]
\[\left[ T \right]=\left[ \dfrac{1}{A}\sqrt{\dfrac{m}{\alpha }} \right]=\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}} \right]\]
So, the correct answer is “Option B”.
Note:
Dimensional analysis has many applications. It can be used to convert a physical quantity from one system to another. Also dimensional analysis can be used to check the correctness of a physical relation and to obtain relationships among various physical quantities involved.
Formula used:
\[P.E=mgh\]
Complete step by step answer:
Using dimensional analysis, we can solve this question.
Dimension of time period, \[\left[ T \right]=\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}} \right]\]
Now,
Let’s find out the dimension of \[\text{ }\!\!\alpha\!\!\text{ }\].
Given that,
\[V\left( x \right)=\alpha {{x}^{4}}\],\[\left( \alpha >0 \right)\] ---- 1
From equation 1, we get,
\[\alpha =\dfrac{V\left( x \right)}{{{x}^{4}}}\]
Here\[V\left( x \right)\]is potential energy and \[x\]indicates length.
Let’s find the dimensions of potential energy and length.
Potential energy, \[P.E=mgh\] -------1
Where,
\[m\] is the mass of the object
\[g\] is the acceleration due to gravity
\[h\] is the height
We have,
\[\left[ m \right]=\left[ {{M}^{1}} \right]\]
\[\left[ g \right]=\left[ {{M}^{0}}{{L}^{1}}{{T}^{2}} \right]\]
\[\left[ h \right]=\left[ {{L}^{1}} \right]\]
Substitute dimensions of \[\text{m,g and h}\] in equation 1. We get,
\[\left[ P.E \right]=\left[ {{M}^{1}} \right]\times \left[ {{M}^{0}}{{L}^{1}}{{T}^{2}} \right]\times \left[ {{L}^{1}} \right]=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]\]
Dimension of length, \[{{\left[ x \right]}^{4}}={{\left[ {{M}^{0}}{{L}^{1}}{{T}^{0}} \right]}^{4}}=\left[ {{M}^{0}}{{L}^{4}}{{T}^{0}} \right]\]
Then,
\[\dfrac{V\left( x \right)}{{{x}^{4}}}=\dfrac{\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]}{\left[ {{M}^{0}}{{L}^{4}}{{T}^{0}} \right]}=\left[ {{M}^{1}}{{L}^{-2}}{{T}^{-2}} \right]\]
\[\left[ \alpha \right]=\left[ {{M}^{1}}{{L}^{-2}}{{T}^{-2}} \right]\]
Here, \[A\]is amplitude. Then, \[\left[ A \right]=\left[ {{L}^{1}} \right]\]
We have, \[\left[ m \right]=\left[ {{M}^{1}} \right]\]
Then, checking options we can see that the dimension of the equation in the third option has the same dimension as the time period.
\[\left[ \dfrac{1}{A}\sqrt{\dfrac{m}{\alpha }} \right]=\dfrac{1}{\left[ {{L}^{1}} \right]}\times \dfrac{{{\left( \left[ {{M}^{1}} \right] \right)}^{\dfrac{1}{2}}}}{{{\left( \left[ {{M}^{1}}{{L}^{-2}}{{T}^{-2}} \right] \right)}^{\dfrac{1}{2}}}}=\dfrac{\left[ {{M}^{\dfrac{1}{2}}}{{L}^{0}}{{T}^{0}} \right]}{\left[ {{M}^{\dfrac{1}{2}}}{{L}^{0}}{{T}^{-1}} \right]}=\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}} \right]\]
\[\left[ T \right]=\left[ \dfrac{1}{A}\sqrt{\dfrac{m}{\alpha }} \right]=\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}} \right]\]
So, the correct answer is “Option B”.
Note:
Dimensional analysis has many applications. It can be used to convert a physical quantity from one system to another. Also dimensional analysis can be used to check the correctness of a physical relation and to obtain relationships among various physical quantities involved.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

