
A particle of mass m is moving in a horizontal circle of radius r under centripetal force equal to \[-\dfrac{K}{{{r}^{2}}}\], where K is a constant. The total energy of the particle is:
A. \[-\dfrac{K}{2{{r}^{2}}}\]
B. \[-\dfrac{K}{2{{r}^{2}}}\]
C. \[-\dfrac{K}{2{{r}^{2}}}\]
D. \[-\dfrac{K}{2{{r}^{2}}}\]
Answer
525.1k+ views
Hint: When a particle is moving in a horizontal circle then the total energy of the particle will be the sum of kinetic energy and potential energy of the particle.
Complete answer:
Given,
When the particle is moving in a horizontal circle than the centripetal force act on the body
= \[\dfrac{m{{v}^{2}}}{r}=\dfrac{-K}{{{r}^{2}}}\](negative sign indicates the direction only)
\[\Rightarrow m{{v}^{2}}=\dfrac{K}{r}\]
\[\text{Kinetic Energy =}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{v}}^{\text{2}}}\text{=}\dfrac{K}{\text{2r}}\]
\[\Rightarrow Potential\,Energy\text{=-}\int\limits_{\infty }^{\text{r}}{\dfrac{K}{{{\text{r}}^{\text{2}}}}\text{dr}}\]
\[\Rightarrow Potential\,Energy=-K\int\limits_{\infty }^{r}{{{r}^{-2}}dr}\]
\[\Rightarrow Potential\,Energy=-K\left[ \dfrac{{{r}^{-1}}}{-1} \right]_{\infty }^{r}\]
\[\Rightarrow Potential\,Energy=-K\left[ \dfrac{-1}{r}+\dfrac{1}{\infty } \right]\]
\[\Rightarrow Potential\,Energy=\dfrac{K}{r}\]
Total energy = kinetic energy +potential energy
\[\Rightarrow \dfrac{K}{2r}-\dfrac{K}{r}=\dfrac{-K}{2r}\]
Therefore, the correct choice is : (C) \[-\dfrac{K}{2r}\]
Note:
In the given data a negative sign indicates only the direction. so we have to exclude it in the calculation . Then the total energy of the particle will be the sum of the kinetic energy and potential energy of the system.
Complete answer:
Given,
When the particle is moving in a horizontal circle than the centripetal force act on the body
= \[\dfrac{m{{v}^{2}}}{r}=\dfrac{-K}{{{r}^{2}}}\](negative sign indicates the direction only)
\[\Rightarrow m{{v}^{2}}=\dfrac{K}{r}\]
\[\text{Kinetic Energy =}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{v}}^{\text{2}}}\text{=}\dfrac{K}{\text{2r}}\]
\[\Rightarrow Potential\,Energy\text{=-}\int\limits_{\infty }^{\text{r}}{\dfrac{K}{{{\text{r}}^{\text{2}}}}\text{dr}}\]
\[\Rightarrow Potential\,Energy=-K\int\limits_{\infty }^{r}{{{r}^{-2}}dr}\]
\[\Rightarrow Potential\,Energy=-K\left[ \dfrac{{{r}^{-1}}}{-1} \right]_{\infty }^{r}\]
\[\Rightarrow Potential\,Energy=-K\left[ \dfrac{-1}{r}+\dfrac{1}{\infty } \right]\]
\[\Rightarrow Potential\,Energy=\dfrac{K}{r}\]
Total energy = kinetic energy +potential energy
\[\Rightarrow \dfrac{K}{2r}-\dfrac{K}{r}=\dfrac{-K}{2r}\]
Therefore, the correct choice is : (C) \[-\dfrac{K}{2r}\]
Note:
In the given data a negative sign indicates only the direction. so we have to exclude it in the calculation . Then the total energy of the particle will be the sum of the kinetic energy and potential energy of the system.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

