
A particle of mass m is moving in a horizontal circle of radius r under centripetal force equal to \[-\dfrac{K}{{{r}^{2}}}\], where K is a constant. The total energy of the particle is:
A. \[-\dfrac{K}{2{{r}^{2}}}\]
B. \[-\dfrac{K}{2{{r}^{2}}}\]
C. \[-\dfrac{K}{2{{r}^{2}}}\]
D. \[-\dfrac{K}{2{{r}^{2}}}\]
Answer
508.6k+ views
Hint: When a particle is moving in a horizontal circle then the total energy of the particle will be the sum of kinetic energy and potential energy of the particle.
Complete answer:
Given,
When the particle is moving in a horizontal circle than the centripetal force act on the body
= \[\dfrac{m{{v}^{2}}}{r}=\dfrac{-K}{{{r}^{2}}}\](negative sign indicates the direction only)
\[\Rightarrow m{{v}^{2}}=\dfrac{K}{r}\]
\[\text{Kinetic Energy =}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{v}}^{\text{2}}}\text{=}\dfrac{K}{\text{2r}}\]
\[\Rightarrow Potential\,Energy\text{=-}\int\limits_{\infty }^{\text{r}}{\dfrac{K}{{{\text{r}}^{\text{2}}}}\text{dr}}\]
\[\Rightarrow Potential\,Energy=-K\int\limits_{\infty }^{r}{{{r}^{-2}}dr}\]
\[\Rightarrow Potential\,Energy=-K\left[ \dfrac{{{r}^{-1}}}{-1} \right]_{\infty }^{r}\]
\[\Rightarrow Potential\,Energy=-K\left[ \dfrac{-1}{r}+\dfrac{1}{\infty } \right]\]
\[\Rightarrow Potential\,Energy=\dfrac{K}{r}\]
Total energy = kinetic energy +potential energy
\[\Rightarrow \dfrac{K}{2r}-\dfrac{K}{r}=\dfrac{-K}{2r}\]
Therefore, the correct choice is : (C) \[-\dfrac{K}{2r}\]
Note:
In the given data a negative sign indicates only the direction. so we have to exclude it in the calculation . Then the total energy of the particle will be the sum of the kinetic energy and potential energy of the system.
Complete answer:
Given,
When the particle is moving in a horizontal circle than the centripetal force act on the body
= \[\dfrac{m{{v}^{2}}}{r}=\dfrac{-K}{{{r}^{2}}}\](negative sign indicates the direction only)
\[\Rightarrow m{{v}^{2}}=\dfrac{K}{r}\]
\[\text{Kinetic Energy =}\dfrac{\text{1}}{\text{2}}\text{m}{{\text{v}}^{\text{2}}}\text{=}\dfrac{K}{\text{2r}}\]
\[\Rightarrow Potential\,Energy\text{=-}\int\limits_{\infty }^{\text{r}}{\dfrac{K}{{{\text{r}}^{\text{2}}}}\text{dr}}\]
\[\Rightarrow Potential\,Energy=-K\int\limits_{\infty }^{r}{{{r}^{-2}}dr}\]
\[\Rightarrow Potential\,Energy=-K\left[ \dfrac{{{r}^{-1}}}{-1} \right]_{\infty }^{r}\]
\[\Rightarrow Potential\,Energy=-K\left[ \dfrac{-1}{r}+\dfrac{1}{\infty } \right]\]
\[\Rightarrow Potential\,Energy=\dfrac{K}{r}\]
Total energy = kinetic energy +potential energy
\[\Rightarrow \dfrac{K}{2r}-\dfrac{K}{r}=\dfrac{-K}{2r}\]
Therefore, the correct choice is : (C) \[-\dfrac{K}{2r}\]
Note:
In the given data a negative sign indicates only the direction. so we have to exclude it in the calculation . Then the total energy of the particle will be the sum of the kinetic energy and potential energy of the system.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

