
A particle of mass m is moving along a trajectory given by
$x={{x}_{\circ }}+a\cos {{\omega }_{1}}t$
$y={{y}_{\circ }}+b\sin {{\omega }_{2}}t$
The torque acting on the particle about the origin, at t=0 is:
$\begin{align}
& a)m({{x}_{\circ }}b+{{y}_{\circ }}a){{\omega }_{1}}^{2}\widehat{k} \\
& b)+m{{y}_{\circ }}a{{\omega }_{1}}^{2}\widehat{k} \\
& c)-m({{x}_{\circ }}b{{\omega }_{2}}^{2}+{{y}_{\circ }}a{{\omega }_{1}}^{2})\widehat{k} \\
& d)Zero \\
\end{align}$
Answer
538.2k+ views
Hint: The position of the particle with respect to the x axes and the y axes is given. In the question it is asked to determine the torque on the particle at t=0. Hence obtaining the required position vector of the particle will allow us to determine the torque about the origin.
Formula used:
$\overline{r}=\overline{x}\widehat{i}+\overline{y}\widehat{j}$
$a=\dfrac{{{d}^{2}}r}{d{{t}^{2}}}$
$\tau =r\times F$
Complete answer:
The position vector of any particle if its coordinates are known i.e. its x coordinate is ‘x’ and y coordinate is ‘y’ then the position with respect to origin is given by,
$\overline{r}=\overline{x}\widehat{i}+\overline{y}\widehat{j}$
Where $\widehat{i},\text{ }\widehat{j}$ are the unit vectors. Hence the position vector of the above particle is given by,
$\overline{r}=({{x}_{\circ }}+a\cos {{\omega }_{1}}t)\widehat{i}+({{y}_{\circ }}+b\sin {{\omega }_{2}}t)\widehat{j}$
The acceleration of the particle is given by the double derivative of the position vector. Hence the acceleration ‘a’ of the particle at any time t is
$\begin{align}
& \dfrac{d\overline{r}}{dt}=(-a{{\omega }_{1}}\sin {{\omega }_{1}}t)\widehat{i}+({{\omega }_{2}}b\cos {{\omega }_{2}}t)\widehat{j} \\
& a=\dfrac{{{d}^{2}}\overline{r}}{d{{t}^{2}}}=(-a{{\omega }_{1}}^{2}\cos {{\omega }_{1}}t)\widehat{i}+(-{{\omega }_{2}}^{2}b\sin {{\omega }_{2}}t)\widehat{j} \\
\end{align}$
From Newton’s second law the force on the particle is given by the dot product of mass into acceleration. Hence the force (F)on the particle at any time ‘t’ is equal to
$\begin{align}
& F=ma \\
& \Rightarrow F=m\left[ (-a{{\omega }_{1}}^{2}\sin {{\omega }_{1}}t)\widehat{i}+(-b{{\omega }_{2}}^{2}\cos {{\omega }_{2}}t)\widehat{j} \right] \\
\end{align}$
At time t=0,
$\begin{align}
& \overline{r}=({{x}_{\circ }}+a\cos {{\omega }_{1}}t)\widehat{i}+({{y}_{\circ }}+b\sin {{\omega }_{2}}t)\widehat{j} \\
& \Rightarrow \overline{r}=({{x}_{\circ }}+a\cos {{\omega }_{1}}(0))\widehat{i}+({{y}_{\circ }}+b\sin {{\omega }_{2}}(0))\widehat{j} \\
& \Rightarrow \overline{r}=x{{\widehat{i}}_{\circ }}+a\widehat{i}+{{y}_{\circ }}\widehat{j}....(1) \\
\end{align}$
And
$\begin{align}
& F=m\left[ (-a{{\omega }_{1}}^{2}\cos {{\omega }_{1}}(0))\widehat{i}+(-b{{\omega }_{2}}^{2}\sin {{\omega }_{2}}(0))\widehat{j} \right] \\
& \Rightarrow F=-ma{{\omega }_{1}}^{2}\widehat{i}.....(2) \\
\end{align}$
The torque ($\tau $ )about the origin of a particle is given by the cross product between the position vector and the force acting on the particle i.e. $\tau =r\times F$
From 1 and 2,
$\begin{align}
& \tau =r\times F \\
& \Rightarrow \tau =({{x}_{\circ }}\widehat{i}+a\widehat{i}+{{y}_{\circ }}\widehat{j})\times (-ma{{\omega }_{1}}^{2}\widehat{i}),\text{ }\because \widehat{i}\times \widehat{i}=0,\text{ }\widehat{j}\times \widehat{i}=-\widehat{k} \\
& \Rightarrow \tau =-ma{{\omega }_{1}}^{2}{{y}_{\circ }}(-\widehat{k})=ma{{\omega }_{1}}^{2}{{y}_{\circ }}\widehat{k} \\
\end{align}$
Hence the correct answer of the above question is option b.
Note:
The position vector of the particle is taken with respect to origin. Hence the torque obtained will also be with respect to the origin. Also the force acting and the acceleration are in the same direction for the particle.
Formula used:
$\overline{r}=\overline{x}\widehat{i}+\overline{y}\widehat{j}$
$a=\dfrac{{{d}^{2}}r}{d{{t}^{2}}}$
$\tau =r\times F$
Complete answer:
The position vector of any particle if its coordinates are known i.e. its x coordinate is ‘x’ and y coordinate is ‘y’ then the position with respect to origin is given by,
$\overline{r}=\overline{x}\widehat{i}+\overline{y}\widehat{j}$
Where $\widehat{i},\text{ }\widehat{j}$ are the unit vectors. Hence the position vector of the above particle is given by,
$\overline{r}=({{x}_{\circ }}+a\cos {{\omega }_{1}}t)\widehat{i}+({{y}_{\circ }}+b\sin {{\omega }_{2}}t)\widehat{j}$
The acceleration of the particle is given by the double derivative of the position vector. Hence the acceleration ‘a’ of the particle at any time t is
$\begin{align}
& \dfrac{d\overline{r}}{dt}=(-a{{\omega }_{1}}\sin {{\omega }_{1}}t)\widehat{i}+({{\omega }_{2}}b\cos {{\omega }_{2}}t)\widehat{j} \\
& a=\dfrac{{{d}^{2}}\overline{r}}{d{{t}^{2}}}=(-a{{\omega }_{1}}^{2}\cos {{\omega }_{1}}t)\widehat{i}+(-{{\omega }_{2}}^{2}b\sin {{\omega }_{2}}t)\widehat{j} \\
\end{align}$
From Newton’s second law the force on the particle is given by the dot product of mass into acceleration. Hence the force (F)on the particle at any time ‘t’ is equal to
$\begin{align}
& F=ma \\
& \Rightarrow F=m\left[ (-a{{\omega }_{1}}^{2}\sin {{\omega }_{1}}t)\widehat{i}+(-b{{\omega }_{2}}^{2}\cos {{\omega }_{2}}t)\widehat{j} \right] \\
\end{align}$
At time t=0,
$\begin{align}
& \overline{r}=({{x}_{\circ }}+a\cos {{\omega }_{1}}t)\widehat{i}+({{y}_{\circ }}+b\sin {{\omega }_{2}}t)\widehat{j} \\
& \Rightarrow \overline{r}=({{x}_{\circ }}+a\cos {{\omega }_{1}}(0))\widehat{i}+({{y}_{\circ }}+b\sin {{\omega }_{2}}(0))\widehat{j} \\
& \Rightarrow \overline{r}=x{{\widehat{i}}_{\circ }}+a\widehat{i}+{{y}_{\circ }}\widehat{j}....(1) \\
\end{align}$
And
$\begin{align}
& F=m\left[ (-a{{\omega }_{1}}^{2}\cos {{\omega }_{1}}(0))\widehat{i}+(-b{{\omega }_{2}}^{2}\sin {{\omega }_{2}}(0))\widehat{j} \right] \\
& \Rightarrow F=-ma{{\omega }_{1}}^{2}\widehat{i}.....(2) \\
\end{align}$
The torque ($\tau $ )about the origin of a particle is given by the cross product between the position vector and the force acting on the particle i.e. $\tau =r\times F$
From 1 and 2,
$\begin{align}
& \tau =r\times F \\
& \Rightarrow \tau =({{x}_{\circ }}\widehat{i}+a\widehat{i}+{{y}_{\circ }}\widehat{j})\times (-ma{{\omega }_{1}}^{2}\widehat{i}),\text{ }\because \widehat{i}\times \widehat{i}=0,\text{ }\widehat{j}\times \widehat{i}=-\widehat{k} \\
& \Rightarrow \tau =-ma{{\omega }_{1}}^{2}{{y}_{\circ }}(-\widehat{k})=ma{{\omega }_{1}}^{2}{{y}_{\circ }}\widehat{k} \\
\end{align}$
Hence the correct answer of the above question is option b.
Note:
The position vector of the particle is taken with respect to origin. Hence the torque obtained will also be with respect to the origin. Also the force acting and the acceleration are in the same direction for the particle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

