Answer
Verified
441k+ views
Hint: It is given that the acceleration (retardation) is proportional to velocity. Therefore, a separable form of a differential equation is already apparent if we write this condition down, as the equations of motion are nothing but differential equations.
Formula Used:
The acceleration of a body is related to its position as:
$a= \dfrac{d^2x}{dt^2}$
Complete step by step answer:
Retardation is caused when a body is undergoing a decrease in velocity with time. Retardation is just opposite to acceleration. We are given that our particle undergoes retardation $\alpha v$. Mathematically we may write:
$a= \dfrac{d^2x}{dt^2} = - \alpha v$,
Since the RHS has velocity, we try to make a velocity term on the LHS too.
$\dfrac{dv}{dt} = - \alpha v $
On the RHS, we multiply and divide by dx, we get:
$\dfrac{dv . dx}{dt . dx} = - \alpha v $
which just becomes
$v. \dfrac{dv }{ dx} = - \alpha v $
It becomes visible now that the expression only has x and v variables remaining.
Canceling the v on both sides, we get:
$ \dfrac{dv }{ dx} = - \alpha $
$dv = - \alpha dx$
we have the parameters:
At t=0, velocity is $v_0$ and we assume that x=0 and after a time t, the velocity will become zero and it would have covered some distance x.
Taking integral on both sides and keeping the limits:
$\int_{0}^{v_0} dv = \int_{x}^{0} - \alpha dx $
We get:
$(0-v_0) = - \alpha (x-0)$
Which gives us the result that the particle after a time t, covers a distance
$x= \dfrac{v_0}{\alpha}$.
Therefore, the correct answer appears to be (A). The particle will cover a total distance $\dfrac{v_0}{\alpha}$.
Note:
The key in the question is the differential equation. Analyze it carefully so that the difficulty decreases later. Here, we eliminated the dt form and rather constructed a differential with respect to position so that it becomes a linear differential equation of first order.
Formula Used:
The acceleration of a body is related to its position as:
$a= \dfrac{d^2x}{dt^2}$
Complete step by step answer:
Retardation is caused when a body is undergoing a decrease in velocity with time. Retardation is just opposite to acceleration. We are given that our particle undergoes retardation $\alpha v$. Mathematically we may write:
$a= \dfrac{d^2x}{dt^2} = - \alpha v$,
Since the RHS has velocity, we try to make a velocity term on the LHS too.
$\dfrac{dv}{dt} = - \alpha v $
On the RHS, we multiply and divide by dx, we get:
$\dfrac{dv . dx}{dt . dx} = - \alpha v $
which just becomes
$v. \dfrac{dv }{ dx} = - \alpha v $
It becomes visible now that the expression only has x and v variables remaining.
Canceling the v on both sides, we get:
$ \dfrac{dv }{ dx} = - \alpha $
$dv = - \alpha dx$
we have the parameters:
At t=0, velocity is $v_0$ and we assume that x=0 and after a time t, the velocity will become zero and it would have covered some distance x.
Taking integral on both sides and keeping the limits:
$\int_{0}^{v_0} dv = \int_{x}^{0} - \alpha dx $
We get:
$(0-v_0) = - \alpha (x-0)$
Which gives us the result that the particle after a time t, covers a distance
$x= \dfrac{v_0}{\alpha}$.
Therefore, the correct answer appears to be (A). The particle will cover a total distance $\dfrac{v_0}{\alpha}$.
Note:
The key in the question is the differential equation. Analyze it carefully so that the difficulty decreases later. Here, we eliminated the dt form and rather constructed a differential with respect to position so that it becomes a linear differential equation of first order.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers