
A particle moves, such that its position vector $\overrightarrow r (t) = \cos \omega t\widehat i + \sin \omega t\widehat j$ where $\omega $ is a constant and t is time. Then which of the following statements is true for the vector $\overrightarrow v (t)$ acceleration $\overrightarrow a (t)$ of the particle
(A) $\overrightarrow v $ is perpendicular to $\overrightarrow r $ and $\overrightarrow a $ is directed away from the origin
(B) $\overrightarrow v $ and $\overrightarrow a $ both are parallel to $\overrightarrow r $
(C) $\overrightarrow v $ and $\overrightarrow a $ both are perpendicular to $\overrightarrow r $
(D) $\overrightarrow v $ is perpendicular to $\overrightarrow r $ and $\overrightarrow a $ is directed towards the origin
Answer
564.6k+ views
Hint:In order to solve the above problem first we have to see what is given in question. Here position vector $\overrightarrow r (t)$ is given.On differentiating $\overrightarrow r (t)$ with respect to time, we get $\overrightarrow v (t)$ velocity vector.
After then on differentiating $\overrightarrow v (t)$ with respect to time, we will get an acceleration vector $\overrightarrow a (t)$.After calculating $\overrightarrow v (t)$ and $\overrightarrow a (t)$ we will check each option one by one.
Complete step by step answer:
In question given that position vector $\overrightarrow r (t) = \cos \omega t\widehat i + \sin \omega t\widehat j$ …..(1)
We know that velocity vector $\overrightarrow v (t) = \dfrac{{d[\overrightarrow r (t)]}}{{dt}}$
So, $\overrightarrow v (t) = \dfrac{{d[\cos (\omega t)\widehat i + \sin (\omega t)\widehat j]}}{{dt}}$
\[\Rightarrow\overrightarrow v (t) = \dfrac{{d[\cos (\omega t)]\widehat i}}{{dt}} + \dfrac{{d[\sin (\omega t)]\widehat j}}{{dt}}\]
\[\Rightarrow\overrightarrow v (t) = - \omega \sin \omega t\widehat i + \omega \cos \omega t\widehat j\]
\[\Rightarrow\overrightarrow v (t) = \omega [\cos (\omega t)\widehat j - \sin (\omega t)\widehat i]\] …..(2)
We also know that
Acceleration vector $\overrightarrow a (t) = \dfrac{{d[\overrightarrow v (t)]}}{{dt}}$
From equation 1
$\overrightarrow a (t) = \dfrac{{d[\omega (\cos \omega t\widehat j - \sin \omega t\widehat i)]}}{{dt}}$
$\Rightarrow\overrightarrow a (t) = \omega \left[ {\dfrac{{d(\cos \omega t)}}{{dt}}\widehat j - \dfrac{{d(\sin \omega t)}}{{dt}}\widehat i} \right]$
$\Rightarrow\overrightarrow a (t) = \omega \left[ { - \omega \sin \omega t\widehat j - \omega \cos \omega t\widehat i} \right]$
\[\Rightarrow\overrightarrow a (t) = - {\omega ^2}(\cos \omega t\widehat i + \sin \omega t\widehat j)\] ………(3)
Now we will check each option one by one.
(A) If $\overrightarrow v $ and $\overrightarrow r $ perpendicular to each other, So, $(\overrightarrow v \cdot \overrightarrow r )$ Should be zero.
Let’s check $ \Rightarrow \overrightarrow v \cdot \overrightarrow r $
From equation 1 and 2
\[ \Rightarrow \left[ {\omega (\cos \omega t\widehat j - \sin \omega t\widehat i)} \right] \cdot ({\cos ^2}\omega t\widehat i + \sin \omega t\widehat j)\]
$ \Rightarrow\overrightarrow v \cdot \overrightarrow r = \omega (\cos \omega t\sin \omega t - \sin \omega t\cos \omega t)$
$ \Rightarrow \overrightarrow v \cdot \overrightarrow r = 0$ …..(4)
And also given in statement $\overrightarrow a $ is directed away from origin. Let’s check.
So, from equation 1 and 3
$\overrightarrow a = - {\omega ^2}\overrightarrow r $
$ \Rightarrow\overrightarrow a = {\omega ^2}( - \overrightarrow r )$ …..(5)
This $ - ve$ sign represents that $\overrightarrow a $ is directed towards the origin.
Hence, A is not true.
(B) Now we will check option B
In this statement given that $\overrightarrow v $ and $\overrightarrow a $ both are parallel to $\overrightarrow r $.
But from equation 4 it is clear that $\overrightarrow v $ and $\overrightarrow r $ perpendicular to each other.
Hence, option B is also not true.
(C) In this statement given that $\overrightarrow v $ and $\overrightarrow a $ both are perpendicular to $\overrightarrow r $. From equation 4 it is clear that $\overrightarrow v $ and $\overrightarrow r $ are perpendicular to each other.
Now we will check that $\overrightarrow a \cdot \overrightarrow r $ will be zero or not.
So, from equation 1 and 3
\[\overrightarrow a \cdot \overrightarrow r = \left\{ { - {\omega ^2}\left[ {\cos \omega t\widehat i + \sin \omega t\widehat j} \right]} \right\} \cdot \left( {{{\cos }^2}\omega t\widehat i + \sin \omega t\widehat j} \right)\]
$\Rightarrow\overrightarrow a \cdot \overrightarrow r = - {\omega ^2}({\cos ^2}\omega t + {\sin ^2}\omega t)$
$\Rightarrow\overrightarrow a \cdot \overrightarrow r = - {\omega ^2}(1)$
$\Rightarrow\overrightarrow a \cdot \overrightarrow r = - {\omega ^2}$
$\therefore\overrightarrow a \cdot \overrightarrow r \ne 0$
So, $\overrightarrow a $ and $\overrightarrow r $ are not perpendicular to each other.
Hence, option C is also not true.
(D) From equation 4 and 5, it is clear that $\overrightarrow v $ and $\overrightarrow r $ are perpendicular to each other and $\overrightarrow a $ is directed towards the origin.
Hence, option D is true.So, option D is the correct answer.
Note: Many time students may get confused between perpendicular and parallel concepts of 2 vectors. If 2 vectors are parallel to each other then their cross product will be zero.
$\overrightarrow A \times \overrightarrow B = 0$
If 2 vectors are perpendicular to each other then their dot product is zero
$\overrightarrow A \cdot \overrightarrow B = 0$
After then on differentiating $\overrightarrow v (t)$ with respect to time, we will get an acceleration vector $\overrightarrow a (t)$.After calculating $\overrightarrow v (t)$ and $\overrightarrow a (t)$ we will check each option one by one.
Complete step by step answer:
In question given that position vector $\overrightarrow r (t) = \cos \omega t\widehat i + \sin \omega t\widehat j$ …..(1)
We know that velocity vector $\overrightarrow v (t) = \dfrac{{d[\overrightarrow r (t)]}}{{dt}}$
So, $\overrightarrow v (t) = \dfrac{{d[\cos (\omega t)\widehat i + \sin (\omega t)\widehat j]}}{{dt}}$
\[\Rightarrow\overrightarrow v (t) = \dfrac{{d[\cos (\omega t)]\widehat i}}{{dt}} + \dfrac{{d[\sin (\omega t)]\widehat j}}{{dt}}\]
\[\Rightarrow\overrightarrow v (t) = - \omega \sin \omega t\widehat i + \omega \cos \omega t\widehat j\]
\[\Rightarrow\overrightarrow v (t) = \omega [\cos (\omega t)\widehat j - \sin (\omega t)\widehat i]\] …..(2)
We also know that
Acceleration vector $\overrightarrow a (t) = \dfrac{{d[\overrightarrow v (t)]}}{{dt}}$
From equation 1
$\overrightarrow a (t) = \dfrac{{d[\omega (\cos \omega t\widehat j - \sin \omega t\widehat i)]}}{{dt}}$
$\Rightarrow\overrightarrow a (t) = \omega \left[ {\dfrac{{d(\cos \omega t)}}{{dt}}\widehat j - \dfrac{{d(\sin \omega t)}}{{dt}}\widehat i} \right]$
$\Rightarrow\overrightarrow a (t) = \omega \left[ { - \omega \sin \omega t\widehat j - \omega \cos \omega t\widehat i} \right]$
\[\Rightarrow\overrightarrow a (t) = - {\omega ^2}(\cos \omega t\widehat i + \sin \omega t\widehat j)\] ………(3)
Now we will check each option one by one.
(A) If $\overrightarrow v $ and $\overrightarrow r $ perpendicular to each other, So, $(\overrightarrow v \cdot \overrightarrow r )$ Should be zero.
Let’s check $ \Rightarrow \overrightarrow v \cdot \overrightarrow r $
From equation 1 and 2
\[ \Rightarrow \left[ {\omega (\cos \omega t\widehat j - \sin \omega t\widehat i)} \right] \cdot ({\cos ^2}\omega t\widehat i + \sin \omega t\widehat j)\]
$ \Rightarrow\overrightarrow v \cdot \overrightarrow r = \omega (\cos \omega t\sin \omega t - \sin \omega t\cos \omega t)$
$ \Rightarrow \overrightarrow v \cdot \overrightarrow r = 0$ …..(4)
And also given in statement $\overrightarrow a $ is directed away from origin. Let’s check.
So, from equation 1 and 3
$\overrightarrow a = - {\omega ^2}\overrightarrow r $
$ \Rightarrow\overrightarrow a = {\omega ^2}( - \overrightarrow r )$ …..(5)
This $ - ve$ sign represents that $\overrightarrow a $ is directed towards the origin.
Hence, A is not true.
(B) Now we will check option B
In this statement given that $\overrightarrow v $ and $\overrightarrow a $ both are parallel to $\overrightarrow r $.
But from equation 4 it is clear that $\overrightarrow v $ and $\overrightarrow r $ perpendicular to each other.
Hence, option B is also not true.
(C) In this statement given that $\overrightarrow v $ and $\overrightarrow a $ both are perpendicular to $\overrightarrow r $. From equation 4 it is clear that $\overrightarrow v $ and $\overrightarrow r $ are perpendicular to each other.
Now we will check that $\overrightarrow a \cdot \overrightarrow r $ will be zero or not.
So, from equation 1 and 3
\[\overrightarrow a \cdot \overrightarrow r = \left\{ { - {\omega ^2}\left[ {\cos \omega t\widehat i + \sin \omega t\widehat j} \right]} \right\} \cdot \left( {{{\cos }^2}\omega t\widehat i + \sin \omega t\widehat j} \right)\]
$\Rightarrow\overrightarrow a \cdot \overrightarrow r = - {\omega ^2}({\cos ^2}\omega t + {\sin ^2}\omega t)$
$\Rightarrow\overrightarrow a \cdot \overrightarrow r = - {\omega ^2}(1)$
$\Rightarrow\overrightarrow a \cdot \overrightarrow r = - {\omega ^2}$
$\therefore\overrightarrow a \cdot \overrightarrow r \ne 0$
So, $\overrightarrow a $ and $\overrightarrow r $ are not perpendicular to each other.
Hence, option C is also not true.
(D) From equation 4 and 5, it is clear that $\overrightarrow v $ and $\overrightarrow r $ are perpendicular to each other and $\overrightarrow a $ is directed towards the origin.
Hence, option D is true.So, option D is the correct answer.
Note: Many time students may get confused between perpendicular and parallel concepts of 2 vectors. If 2 vectors are parallel to each other then their cross product will be zero.
$\overrightarrow A \times \overrightarrow B = 0$
If 2 vectors are perpendicular to each other then their dot product is zero
$\overrightarrow A \cdot \overrightarrow B = 0$
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

