
A particle moves in the x-y plane under the influence of a force such that the influence of a force such that its linear momentum is $\vec p(t) = \,A\left( {i\,\cos (kt) - j\,\sin (kt)} \right)$ , where $A$ and $k$ are the constants. The angle between the force and the linear momentum is
A. $0^\circ $
B. $30^\circ $
C. $45^\circ $
D. $90^\circ $
Answer
571.8k+ views
Hint: The force is defined as the push or pull of an object that results in the change in velocity of that object. Linear momentum is defined as the product of the mass of an object and the velocity of that object. Therefore, we will calculate the angle between the force and linear momentum by using the dot product of force and linear momentum.
Complete step by step answer:
As given in the question, the linear momentum of a particle is $\vec p(t) = \,A\left( {i\,\cos (kt) - j\,\sin (kt)} \right)$
Now, differentiating both sides of the above equation, we get
$\dfrac{{dp}}{{dt}} = A\left( { - i\sin (kt) \times k - j\cos (kt) \times k} \right)$
$ \Rightarrow \,\dfrac{{dp}}{{dt}} = A\left( { - ik\,\sin (kt) - jk\,\cos (kt)} \right)$
Now, the force of an object according to newton’s law is defined as the ratio of the change in momentum of a particle to the change in time and is given by,
$F = \dfrac{{dp}}{{dt}}$
Therefore, putting the value of $\dfrac{{dp}}{{dt}}$ , we get
$F = A\left( { - ik\,\sin (kt) - jk\,\cos (kt)} \right)$
Now, let the angle between the force and the linear momentum is $\theta $ .
Therefore, the angle between the force and linear momentum is
$\cos \,\theta = \dfrac{{F.\vec p}}{{\left| F \right|\left| {\vec p} \right|}}$
Now, putting the values of $F$ and $\vec p$ , we get
$\cos \theta = \dfrac{{A\left( { - ik\,\sin (kt) - jk\,\cos (kt)} \right).A\left( {i\,\cos (kt) - j\,\sin (kt)} \right)}}{{\sqrt {{A^2}{{\left( { - ik\,\sin (kt) - ik\,\cos (kt)} \right)}^2} - {{\left( {{A^2}\left( {i\,\cos (kt) - j\,\sin (kt)} \right)} \right)}^2}} }}$
$ \Rightarrow \,\cos \theta = \dfrac{{{A^2}\left[ {\left( { - i.ik\,\sin (kt)\,\cos (kt)} \right) + \left( {j.j\sin (kt)\,\cos (kt)} \right)} \right]}}{{A\sqrt {\left( {{i^2}{k^2}\,{{\sin }^2}(kt) + {j^2}{k^2}{{\cos }^2}(kt) + i.j{k^2}\sin (kt)\,\cos (kt)} \right) - \left( {{i^2}\,{{\cos }^2}(kt) + {j^2}\sin (kt) + ij\,\cos (kt)\,\sin (kt)} \right)} }}$
$ \Rightarrow \,\cos \theta = \dfrac{{{A^2}\left[ {\left( { - k\,\sin (kt)\,\cos (kt)} \right) + \left( {k\sin (kt)\,\cos (kt)} \right)} \right]}}{{A\sqrt {\left( {{i^2}{k^2}\,{{\sin }^2}(kt) + {j^2}{k^2}{{\cos }^2}(kt) + i.j{k^2}\sin (kt)\,\cos (kt)} \right) - \left( {{i^2}\,{{\cos }^2}(kt) + {j^2}\sin (kt) + ij\,\cos (kt)\,\sin (kt)} \right)} }}$
$ \Rightarrow \,\cos \theta = 0$
$ \therefore \,\theta = 90^\circ $
Therefore, the angle between the force and the linear momentum is $90^\circ $ .
Hence, (D) is the correct option.
Note:Newton’s second law of motion is also applicable to the conservation of linear momentum. When the net force acting on the body will be zero, the momentum of the body is constant. Also, the net force acting on the body is equal to the rate of change of the momentum. Now, when the mass of an object increases or decreases there will be a change in the momentum of an object. Therefore, the momentum of an object changes with the change in the mass of an object.
Complete step by step answer:
As given in the question, the linear momentum of a particle is $\vec p(t) = \,A\left( {i\,\cos (kt) - j\,\sin (kt)} \right)$
Now, differentiating both sides of the above equation, we get
$\dfrac{{dp}}{{dt}} = A\left( { - i\sin (kt) \times k - j\cos (kt) \times k} \right)$
$ \Rightarrow \,\dfrac{{dp}}{{dt}} = A\left( { - ik\,\sin (kt) - jk\,\cos (kt)} \right)$
Now, the force of an object according to newton’s law is defined as the ratio of the change in momentum of a particle to the change in time and is given by,
$F = \dfrac{{dp}}{{dt}}$
Therefore, putting the value of $\dfrac{{dp}}{{dt}}$ , we get
$F = A\left( { - ik\,\sin (kt) - jk\,\cos (kt)} \right)$
Now, let the angle between the force and the linear momentum is $\theta $ .
Therefore, the angle between the force and linear momentum is
$\cos \,\theta = \dfrac{{F.\vec p}}{{\left| F \right|\left| {\vec p} \right|}}$
Now, putting the values of $F$ and $\vec p$ , we get
$\cos \theta = \dfrac{{A\left( { - ik\,\sin (kt) - jk\,\cos (kt)} \right).A\left( {i\,\cos (kt) - j\,\sin (kt)} \right)}}{{\sqrt {{A^2}{{\left( { - ik\,\sin (kt) - ik\,\cos (kt)} \right)}^2} - {{\left( {{A^2}\left( {i\,\cos (kt) - j\,\sin (kt)} \right)} \right)}^2}} }}$
$ \Rightarrow \,\cos \theta = \dfrac{{{A^2}\left[ {\left( { - i.ik\,\sin (kt)\,\cos (kt)} \right) + \left( {j.j\sin (kt)\,\cos (kt)} \right)} \right]}}{{A\sqrt {\left( {{i^2}{k^2}\,{{\sin }^2}(kt) + {j^2}{k^2}{{\cos }^2}(kt) + i.j{k^2}\sin (kt)\,\cos (kt)} \right) - \left( {{i^2}\,{{\cos }^2}(kt) + {j^2}\sin (kt) + ij\,\cos (kt)\,\sin (kt)} \right)} }}$
$ \Rightarrow \,\cos \theta = \dfrac{{{A^2}\left[ {\left( { - k\,\sin (kt)\,\cos (kt)} \right) + \left( {k\sin (kt)\,\cos (kt)} \right)} \right]}}{{A\sqrt {\left( {{i^2}{k^2}\,{{\sin }^2}(kt) + {j^2}{k^2}{{\cos }^2}(kt) + i.j{k^2}\sin (kt)\,\cos (kt)} \right) - \left( {{i^2}\,{{\cos }^2}(kt) + {j^2}\sin (kt) + ij\,\cos (kt)\,\sin (kt)} \right)} }}$
$ \Rightarrow \,\cos \theta = 0$
$ \therefore \,\theta = 90^\circ $
Therefore, the angle between the force and the linear momentum is $90^\circ $ .
Hence, (D) is the correct option.
Note:Newton’s second law of motion is also applicable to the conservation of linear momentum. When the net force acting on the body will be zero, the momentum of the body is constant. Also, the net force acting on the body is equal to the rate of change of the momentum. Now, when the mass of an object increases or decreases there will be a change in the momentum of an object. Therefore, the momentum of an object changes with the change in the mass of an object.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

