Answer
Verified
437.1k+ views
Hint:-The potential energy is the energy which an object attains at a particular position in its motion. The force due to potential energy is the force required to move the object from the reference point to a position which is at a distance r from the reference point.
Formula used: The formula of the force exerted by a particle in conservative field having a potential energy is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle. Also$\hat i$,$\hat j$ and $\hat k$ are directions representing x-direction ,y-direction and z-direction.
Complete step-by-step solution
It is given that the potential energy of a particle is equal to $U = \dfrac{{20xy}}{z}$ and we have to find the force that is exerted on the particle.
As the force exerted on the particle is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle.
Therefore, the force is given by,
$ \Rightarrow F = - \nabla U$
Replace the value of potential energy in the above equation and the differentiating it partially.
$ \Rightarrow F = - \nabla \left( {\dfrac{{20xy}}{z}} \right)$
$ \Rightarrow F = - \left( {\dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k} \right) \cdot \left( {\dfrac{{20xy}}{z}} \right)$
After differentiating the potential energy we get,
$ \Rightarrow F = - \left( {\dfrac{{20y}}{z}\hat i + \dfrac{{20x}}{z}\hat j - \dfrac{{20xy}}{{{z^2}}}\hat k} \right)$
Solving furthermore we get,
$ \Rightarrow F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$.
The force applied on the particle is given by$F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$. The correct answer for this problem is option B.
Note:- It is important for students to differentiate the potential energy with respect to x, y and z with care as it is not a normal process of differentiation but this is the partial differentiation of the potential energy. The partial differential is done such that if a given term is differentiated with respect to x then every term except x is taken as constant.
Formula used: The formula of the force exerted by a particle in conservative field having a potential energy is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle. Also$\hat i$,$\hat j$ and $\hat k$ are directions representing x-direction ,y-direction and z-direction.
Complete step-by-step solution
It is given that the potential energy of a particle is equal to $U = \dfrac{{20xy}}{z}$ and we have to find the force that is exerted on the particle.
As the force exerted on the particle is given by,
$F = - \nabla U$
Where $\nabla $ is equal to $\nabla = \dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k$ and $U$ is the potential energy of the particle.
Therefore, the force is given by,
$ \Rightarrow F = - \nabla U$
Replace the value of potential energy in the above equation and the differentiating it partially.
$ \Rightarrow F = - \nabla \left( {\dfrac{{20xy}}{z}} \right)$
$ \Rightarrow F = - \left( {\dfrac{\partial }{{\partial x}}\hat i + \dfrac{\partial }{{\partial y}}\hat j + \dfrac{\partial }{{\partial z}}\hat k} \right) \cdot \left( {\dfrac{{20xy}}{z}} \right)$
After differentiating the potential energy we get,
$ \Rightarrow F = - \left( {\dfrac{{20y}}{z}\hat i + \dfrac{{20x}}{z}\hat j - \dfrac{{20xy}}{{{z^2}}}\hat k} \right)$
Solving furthermore we get,
$ \Rightarrow F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$.
The force applied on the particle is given by$F = - \dfrac{{20y}}{z}\hat i - \dfrac{{20x}}{z}\hat j + \dfrac{{20xy}}{{{z^2}}}\hat k$. The correct answer for this problem is option B.
Note:- It is important for students to differentiate the potential energy with respect to x, y and z with care as it is not a normal process of differentiation but this is the partial differentiation of the potential energy. The partial differential is done such that if a given term is differentiated with respect to x then every term except x is taken as constant.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE