
A particle executes simple harmonic motion with an amplitude of 10cm and time period 6s. At t=0 , it is at a distance if it is at point \[x=5cm\] going towards positive \[x\] direction.Write the equation of displacement (x) at time t . Find the magnitude of the acceleration of the particle at t =4s.
Answer
544.8k+ views
HintThe equation of displacement (along x axis is given by: \[x=A\cos \left( wt+\theta \right)\]) By putting initial condition values, the value of $\theta $ and hence the required equation is achieved. Velocity can then be calculated by differentiating x with respect to t and hence, acceleration can be calculated by differentiating \[v\] with respect to\[t\] .
Complete step by step solution
Equation of displacement along x axis is given by:
\[\begin{align}
& x=A\cos \left( \cot +\theta \right) \\
& T=6\text{ sec (given)} \\
& \therefore x=10\text{ cos}\left( \dfrac{2\pi }{T}+t+\theta \right) \\
& x=10\text{cos}\left( \dfrac{2\pi }{6}+t+\theta \right) \\
& \text{ At }t=0,x=5cm(\text{given)} \\
\end{align}\]
\[\begin{align}
& \therefore \text{5=}10\text{cos}\left( \dfrac{\pi }{3}\times 0+\theta \right) \\
& \cos \theta =\dfrac{1}{2} \\
& \theta -\dfrac{\pi }{3} \\
& \therefore \text{Equation of displacement along }x\ \text{axis} \\
& x=10\text{cos}\left( \dfrac{2\pi }{6}t+\dfrac{\pi }{3} \right) \\
\end{align}\]
Now , we have to calculate velocity
It is given by:
$\begin{align}
& v=\dfrac{dy}{dx}=-10\sin \left( \dfrac{2\pi }{6}t+\dfrac{\pi }{3} \right)\times \dfrac{\pi }{3} \\
& \text{acceleration }a=\dfrac{dy}{dx}=-10{{\left( \dfrac{\pi }{3} \right)}^{2}}\cos \left( \dfrac{2\pi }{6}t+\dfrac{\pi }{3} \right) \\
& \text{acceleration at }t=4 \\
\end{align}$
$\begin{align}
& \text{ }a=-10{{\left( \dfrac{\pi }{3} \right)}^{2}}\cos \left( \dfrac{2\pi }{6}\times 4+\dfrac{\pi }{3} \right) \\
& \text{ }=10{{\left( \dfrac{\pi }{3} \right)}^{2}}\cos \left( 300{}^\circ \right) \\
& \text{ }=10{{\left( \dfrac{\pi }{3} \right)}^{2}}\cos \left( \dfrac{1}{2} \right) \\
& \text{ }a=-5\cdot 48cm/{{\sec }^{2}} \\
& \therefore \text{magnitude of acceleration is given by} \\
& \text{ }a=-5\cdot 48cm/{{\sec }^{2}} \\
& \text{ } \\
\end{align}$
Note Note that when displacement along x axis is given, the formula to be used is\[x=A\cos \left( wt+\theta \right)\]
Where displacement along y axis is given, then formula to be used is \[y=A\sin \left( wt+\theta \right)\]
Complete step by step solution
Equation of displacement along x axis is given by:
\[\begin{align}
& x=A\cos \left( \cot +\theta \right) \\
& T=6\text{ sec (given)} \\
& \therefore x=10\text{ cos}\left( \dfrac{2\pi }{T}+t+\theta \right) \\
& x=10\text{cos}\left( \dfrac{2\pi }{6}+t+\theta \right) \\
& \text{ At }t=0,x=5cm(\text{given)} \\
\end{align}\]
\[\begin{align}
& \therefore \text{5=}10\text{cos}\left( \dfrac{\pi }{3}\times 0+\theta \right) \\
& \cos \theta =\dfrac{1}{2} \\
& \theta -\dfrac{\pi }{3} \\
& \therefore \text{Equation of displacement along }x\ \text{axis} \\
& x=10\text{cos}\left( \dfrac{2\pi }{6}t+\dfrac{\pi }{3} \right) \\
\end{align}\]
Now , we have to calculate velocity
It is given by:
$\begin{align}
& v=\dfrac{dy}{dx}=-10\sin \left( \dfrac{2\pi }{6}t+\dfrac{\pi }{3} \right)\times \dfrac{\pi }{3} \\
& \text{acceleration }a=\dfrac{dy}{dx}=-10{{\left( \dfrac{\pi }{3} \right)}^{2}}\cos \left( \dfrac{2\pi }{6}t+\dfrac{\pi }{3} \right) \\
& \text{acceleration at }t=4 \\
\end{align}$
$\begin{align}
& \text{ }a=-10{{\left( \dfrac{\pi }{3} \right)}^{2}}\cos \left( \dfrac{2\pi }{6}\times 4+\dfrac{\pi }{3} \right) \\
& \text{ }=10{{\left( \dfrac{\pi }{3} \right)}^{2}}\cos \left( 300{}^\circ \right) \\
& \text{ }=10{{\left( \dfrac{\pi }{3} \right)}^{2}}\cos \left( \dfrac{1}{2} \right) \\
& \text{ }a=-5\cdot 48cm/{{\sec }^{2}} \\
& \therefore \text{magnitude of acceleration is given by} \\
& \text{ }a=-5\cdot 48cm/{{\sec }^{2}} \\
& \text{ } \\
\end{align}$
Note Note that when displacement along x axis is given, the formula to be used is\[x=A\cos \left( wt+\theta \right)\]
Where displacement along y axis is given, then formula to be used is \[y=A\sin \left( wt+\theta \right)\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

