
A park, in the shape of a quadrilateral ABCD, has \[\angle C = 90^\circ \], \[AB = 9{\rm{ m}}\], \[{\rm{ }}BC = 12{\rm{ m}}\] $CD = 5\;{\rm{m}}$ and \[AD = 8{\rm{ m}}\]. How much area does it occupy?
Answer
576k+ views
Hint: To find the total area of park divide the quadrilateral to two triangles that is $\Delta ABD$ and $\Delta BCD$. The total area of park will be= area ΔABD + area ΔBCD.
Complete step by step solution:
The angle of C is $90^\circ $.
The length of AB is $9\;{\rm{m}}$.
The length of BC is $12\;{\rm{m}}$.
The length of the CD is $5\;{\rm{m}}$.
The length of AD is $8\;{\rm{m}}$.
The\[\Delta BCD\]is a right angled triangle since$\angle C = 90^\circ $.
The formula for right-angled triangle is,
\[\begin{array}{c}
{\rm{Area of }}\Delta BCD{\rm{ }} = \dfrac{1}{2} \times BC \times CD\\
= \dfrac{1}{2} \times 12 \times 5\;{{\rm{m}}^2}\\
= 30\;{{\rm{m}}^2}
\end{array}\]
The general formula for area of triangle is,
${\rm{A}} = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $…..(1)
Here, $s$is the semi-perimeter and $a,\;b,\;c$are the sides of the triangle.
To find the value of BD we apply Pythagora's theorem since $\angle C = 90^\circ $.
$\begin{array}{c}
B{D^2} = B{C^2} + C{D^2}\\
= {\left( {12} \right)^2} + {\left( 5 \right)^2}\\
= 144 + 25\\
= 169
\end{array}$
Hence, taking square root on both sides we obtain,
$\begin{array}{c}
BD = \sqrt {169} \\
= \sqrt {{{13}^2}} \\
= 13\,\;{\rm{m}}
\end{array}$
The formula for semi-perimeter is,
$s = \dfrac{{a + b + c}}{2}$
Substitute $a,\;b,\;c$values in$s$,
$\begin{array}{c}
s = \dfrac{{AD + AB + BD}}{2}\\
= \dfrac{{8 + 9 + 13}}{2}\\
= \dfrac{{30}}{2}\\
= 15\;{\rm{m}}
\end{array}$
On putting, the value of s in the equation (1).
$\begin{array}{c}
{\rm{Area of }}\Delta {\rm{ABD }} = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} \\
= \sqrt {15\left( {15 - 8} \right)\left( {15 - 9} \right)\left( {15 - 13} \right)} \\
= \sqrt {15\left( 7 \right)\left( 6 \right)\left( 2 \right)} {\rm{ }}{{\rm{m}}^2}\\
= 35.46{\rm{ }}{{\rm{m}}^2}
\end{array}$
Hence, the area of the triangle \[\Delta ABD{\rm{ }} = {\rm{ }}35.46{\rm{ }}{{\rm{m}}^2}.\]
\[\begin{array}{c}
{\rm{The area of park }} = {\rm{ Area of }}\Delta {\rm{ABD }} + {\rm{Area of }}\Delta {\rm{BCD}}\;\\
= 35.46{\rm{ }} + {\rm{ }}30{\rm{ }}{{\rm{m}}^2}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\\
= 65.46{\rm{ }}{{\rm{m}}^2}\;
\end{array}\]
Therefore, the area of park is \[65.46{\rm{ }}{{\rm{m}}^2}\;\].
Note: If $\angle C = 90^\circ $, so we will use right angle triangle formula if $\angle C$ is not equal to $90^\circ $ then, right angle triangle formula should not be used instead of which we need to use triangle formula.
Complete step by step solution:
The angle of C is $90^\circ $.
The length of AB is $9\;{\rm{m}}$.
The length of BC is $12\;{\rm{m}}$.
The length of the CD is $5\;{\rm{m}}$.
The length of AD is $8\;{\rm{m}}$.
The\[\Delta BCD\]is a right angled triangle since$\angle C = 90^\circ $.
The formula for right-angled triangle is,
\[\begin{array}{c}
{\rm{Area of }}\Delta BCD{\rm{ }} = \dfrac{1}{2} \times BC \times CD\\
= \dfrac{1}{2} \times 12 \times 5\;{{\rm{m}}^2}\\
= 30\;{{\rm{m}}^2}
\end{array}\]
The general formula for area of triangle is,
${\rm{A}} = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} $…..(1)
Here, $s$is the semi-perimeter and $a,\;b,\;c$are the sides of the triangle.
To find the value of BD we apply Pythagora's theorem since $\angle C = 90^\circ $.
$\begin{array}{c}
B{D^2} = B{C^2} + C{D^2}\\
= {\left( {12} \right)^2} + {\left( 5 \right)^2}\\
= 144 + 25\\
= 169
\end{array}$
Hence, taking square root on both sides we obtain,
$\begin{array}{c}
BD = \sqrt {169} \\
= \sqrt {{{13}^2}} \\
= 13\,\;{\rm{m}}
\end{array}$
The formula for semi-perimeter is,
$s = \dfrac{{a + b + c}}{2}$
Substitute $a,\;b,\;c$values in$s$,
$\begin{array}{c}
s = \dfrac{{AD + AB + BD}}{2}\\
= \dfrac{{8 + 9 + 13}}{2}\\
= \dfrac{{30}}{2}\\
= 15\;{\rm{m}}
\end{array}$
On putting, the value of s in the equation (1).
$\begin{array}{c}
{\rm{Area of }}\Delta {\rm{ABD }} = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)} \\
= \sqrt {15\left( {15 - 8} \right)\left( {15 - 9} \right)\left( {15 - 13} \right)} \\
= \sqrt {15\left( 7 \right)\left( 6 \right)\left( 2 \right)} {\rm{ }}{{\rm{m}}^2}\\
= 35.46{\rm{ }}{{\rm{m}}^2}
\end{array}$
Hence, the area of the triangle \[\Delta ABD{\rm{ }} = {\rm{ }}35.46{\rm{ }}{{\rm{m}}^2}.\]
\[\begin{array}{c}
{\rm{The area of park }} = {\rm{ Area of }}\Delta {\rm{ABD }} + {\rm{Area of }}\Delta {\rm{BCD}}\;\\
= 35.46{\rm{ }} + {\rm{ }}30{\rm{ }}{{\rm{m}}^2}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\\
= 65.46{\rm{ }}{{\rm{m}}^2}\;
\end{array}\]
Therefore, the area of park is \[65.46{\rm{ }}{{\rm{m}}^2}\;\].
Note: If $\angle C = 90^\circ $, so we will use right angle triangle formula if $\angle C$ is not equal to $90^\circ $ then, right angle triangle formula should not be used instead of which we need to use triangle formula.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

