
A parallel plate capacitor has capacitance of . Both the plates are given a charge of . The potential difference developed across the capacitor is:
Answer
501.6k+ views
1 likes
Hint: We can find the electric field on both the plates. Next, find out the net electric field on the capacitor. Find the voltage across the circuit as voltage can be expressed in terms of capacitance, which is given an electric field, which can be found out.
Formula used:
Complete step-by-step solution:
Given, the charges on the plates are .the electric field due to the charges on the plates is,
Therefore, the net electric field due to both the charges is,
Now, we know,
Given, capacitance of the circuit as
Therefore, the voltage across the circuit will be,
Therefore, the correct option is option d.
Additional information:
A capacitor is a component, which has the ability or capacity to store energy as an electric charge producing a potential difference or generating some amount of voltage across the plates. A capacitor consists of two or more parallel conducting metal plates, which are not connected or touching each other but are separated by air or another dielectric material. The conductive plates in the capacitor are usually round, square, or rectangular in shape. When an external voltage is supplied, the current flows without negligible resistance or no resistance at all. If the flow of electrons is occurring in between the plates, the current is known as charging current. The strength or rate if this charging current is maximum when plates are discharged fully and slowly reduces its value to zero when they are fully charged.
Note: If the charges present on the plates are not of the same sign, the net electric field acting on the plates might change accordingly. In the above question, both the charges on the capacitor plates are positive. All the units of the values must be of the same system. If not, make the changes to the SI unit or any other unit system.
Formula used:
Complete step-by-step solution:

Given, the charges on the plates are
Therefore, the net electric field due to both the charges is,
Now, we know,
Given, capacitance of the circuit as
Therefore, the voltage across the circuit will be,
Therefore, the correct option is option d.
Additional information:
A capacitor is a component, which has the ability or capacity to store energy as an electric charge producing a potential difference or generating some amount of voltage across the plates. A capacitor consists of two or more parallel conducting metal plates, which are not connected or touching each other but are separated by air or another dielectric material. The conductive plates in the capacitor are usually round, square, or rectangular in shape. When an external voltage is supplied, the current flows without negligible resistance or no resistance at all. If the flow of electrons is occurring in between the plates, the current is known as charging current. The strength or rate if this charging current is maximum when plates are discharged fully and slowly reduces its value to zero when they are fully charged.
Note: If the charges present on the plates are not of the same sign, the net electric field acting on the plates might change accordingly. In the above question, both the charges on the capacitor plates are positive. All the units of the values must be of the same system. If not, make the changes to the SI unit or any other unit system.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Why should a magnesium ribbon be cleaned before burning class 12 chemistry CBSE

A renewable exhaustible natural resources is A Coal class 12 biology CBSE

Megasporangium is equivalent to a Embryo sac b Fruit class 12 biology CBSE

What is Zeises salt and ferrocene Explain with str class 12 chemistry CBSE

How to calculate power in series and parallel circ class 12 physics CBSE
