
A \[{\text{NX}}\] is produced by the following step reactions
1. ${\text{M}} + {{\text{X}}_2} \to {\text{M}}{{\text{X}}_2}$
2. \[{\text{M}}{{\text{X}}_2} + {{\text{X}}_2} \to {{\text{M}}_3}{{\text{X}}_8}\]
3. \[{{\text{M}}_3}{{\text{X}}_8} + {{\text{N}}_2}{\text{C}}{{\text{O}}_3} \to {\text{NX}} + {\text{C}}{{\text{O}}_2} + {{\text{M}}_3}{{\text{O}}_4}\]
How much ${\text{M}}$ (metal) is consumed to produce $206{\text{ gm}}$ of \[{\text{NX}}\]. (Take at wt of ${\text{M}} = 56$, ${\text{N}} = 23$, ${\text{X}} = 80$)
a. $336{\text{ gm}}$
b. $56{\text{ gm}}$
c. $\dfrac{{14}}{3}{\text{ gm}}$
d. $\dfrac{7}{4}{\text{ gm}}$
Answer
556.2k+ views
Hint:We have to calculate the mass of ${\text{M}}$ (metal) consumed to produce $206{\text{ gm}}$ of \[{\text{NX}}\]. To solve this calculate the mole ratio of ${\text{M}}$ (metal) and \[{\text{NX}}\]. Calculate the number of moles of both ${\text{M}}$ (metal) and \[{\text{NX}}\] by taking the given mass the molar mass.
Formula Used: ${\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {{\text{gm}}} \right)}}{{{\text{Molar mass}}\left( {{\text{gm/mol}}} \right)}}$
Complete answer:
First we have to determine a balanced chemical equation which gives the stoichiometry between ${\text{M}}$ (metal) and \[{\text{NX}}\].
We are given three equations as follows:
${\text{M}} + {{\text{X}}_2} \to {\text{M}}{{\text{X}}_2}$ …… (1)
\[{\text{M}}{{\text{X}}_2} + {{\text{X}}_2} \to {{\text{M}}_3}{{\text{X}}_8}\] …… (2)
\[{{\text{M}}_3}{{\text{X}}_8} + {{\text{N}}_2}{\text{C}}{{\text{O}}_3} \to {\text{NX}} + {\text{C}}{{\text{O}}_2} + {{\text{M}}_3}{{\text{O}}_4}\] …… (3)
Multiply equation (1) by 3. Thus,
${\text{3M}} + 3{{\text{X}}_2} \to 3{\text{M}}{{\text{X}}_2}$ …… (4)
Balance the equation (2) by changing the coefficient of ${\text{M}}{{\text{X}}_2}$ to 3. Thus,
\[{\text{3M}}{{\text{X}}_2} + {{\text{X}}_2} \to {{\text{M}}_3}{{\text{X}}_8}\] …… (5)
Add equation (4), equation (5) and equation (3). Thus,
${\text{3M}} + 43{{\text{X}}_2} + {{\text{N}}_2}{\text{C}}{{\text{O}}_3} \to {\text{NX}} + {\text{C}}{{\text{O}}_2} + {{\text{M}}_3}{{\text{O}}_4}$ …… (6)
Now, calculate the molar mass of \[{\text{NX}}\] from the given atomic weights. Thus,
Molar mass of \[{\text{NX}}\] $ = 23 + 80$
Molar mass of \[{\text{NX}}\] $ = 103{\text{ gm/mol}}$
Thus, the molar mass of \[{\text{NX}}\] is $103{\text{ gm/mol}}$.
Now, calculate the number of moles of \[{\text{NX}}\] using the equation as follows:
${\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {{\text{gm}}} \right)}}{{{\text{Molar mass}}\left( {{\text{gm/mol}}} \right)}}$
We are given that $206{\text{ gm}}$ of \[{\text{NX}}\] is produced. i.e. the mass of \[{\text{NX}}\] is $206{\text{ gm}}$. And the molar mass of \[{\text{NX}}\] is $103{\text{ gm/mol}}$. Thus,
${\text{Number of moles of NX}} = \dfrac{{206{\text{ gm}}}}{{103{\text{ gm/mol}}}}$
${\text{Number of moles of NX}} = 2{\text{ mol}}$
Thus, the number of moles of \[{\text{NX}}\] are $2{\text{ mol}}$.
From equation (6), we can see that the mole ratio of ${\text{M}}$ (metal) and \[{\text{NX}}\] is $3:1$. i.e. three moles of ${\text{M}}$ (metal) are required to produce one mole of \[{\text{NX}}\]. But the number of moles of \[{\text{NX}}\] are $2{\text{ mol}}$.
Thus, to produce $2{\text{ mol}}$ of \[{\text{NX}}\], $6{\text{ mol}}$ of ${\text{M}}$ (metal) are required.
Now, we will calculate the mass of ${\text{M}}$ (metal) using the equation as follows:
${\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {{\text{gm}}} \right)}}{{{\text{Molar mass}}\left( {{\text{gm/mol}}} \right)}}$
${\text{Mass}}\left( {{\text{gm}}} \right) = {\text{Number of moles}}\left( {{\text{mol}}} \right) \times {\text{Molar mass}}\left( {{\text{gm/mol}}} \right)$
We are given that the atomic mass of ${\text{M}}$ (metal) is $56{\text{ gm/mol}}$. And $6{\text{ mol}}$ of ${\text{M}}$ (metal) are required. Thus,
${\text{Mass}} = 6{\text{ mol}} \times 56{\text{ gm/mol}}$
${\text{Mass}} = 336{\text{ gm}}$
Thus, the mass of ${\text{M}}$ (metal) consumed to produce $206{\text{ gm}}$ of \[{\text{NX}}\] is $336{\text{ gm}}$.
Thus, the correct option is (a) $336{\text{ gm}}$.
Note:
Remember to balance the equations correctly. Unbalanced equations can lead to wrong mole ratios leading to wrong answers. The molar mass of \[{\text{NX}}\] can be calculated using the given atomic weights.
Formula Used: ${\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {{\text{gm}}} \right)}}{{{\text{Molar mass}}\left( {{\text{gm/mol}}} \right)}}$
Complete answer:
First we have to determine a balanced chemical equation which gives the stoichiometry between ${\text{M}}$ (metal) and \[{\text{NX}}\].
We are given three equations as follows:
${\text{M}} + {{\text{X}}_2} \to {\text{M}}{{\text{X}}_2}$ …… (1)
\[{\text{M}}{{\text{X}}_2} + {{\text{X}}_2} \to {{\text{M}}_3}{{\text{X}}_8}\] …… (2)
\[{{\text{M}}_3}{{\text{X}}_8} + {{\text{N}}_2}{\text{C}}{{\text{O}}_3} \to {\text{NX}} + {\text{C}}{{\text{O}}_2} + {{\text{M}}_3}{{\text{O}}_4}\] …… (3)
Multiply equation (1) by 3. Thus,
${\text{3M}} + 3{{\text{X}}_2} \to 3{\text{M}}{{\text{X}}_2}$ …… (4)
Balance the equation (2) by changing the coefficient of ${\text{M}}{{\text{X}}_2}$ to 3. Thus,
\[{\text{3M}}{{\text{X}}_2} + {{\text{X}}_2} \to {{\text{M}}_3}{{\text{X}}_8}\] …… (5)
Add equation (4), equation (5) and equation (3). Thus,
${\text{3M}} + 43{{\text{X}}_2} + {{\text{N}}_2}{\text{C}}{{\text{O}}_3} \to {\text{NX}} + {\text{C}}{{\text{O}}_2} + {{\text{M}}_3}{{\text{O}}_4}$ …… (6)
Now, calculate the molar mass of \[{\text{NX}}\] from the given atomic weights. Thus,
Molar mass of \[{\text{NX}}\] $ = 23 + 80$
Molar mass of \[{\text{NX}}\] $ = 103{\text{ gm/mol}}$
Thus, the molar mass of \[{\text{NX}}\] is $103{\text{ gm/mol}}$.
Now, calculate the number of moles of \[{\text{NX}}\] using the equation as follows:
${\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {{\text{gm}}} \right)}}{{{\text{Molar mass}}\left( {{\text{gm/mol}}} \right)}}$
We are given that $206{\text{ gm}}$ of \[{\text{NX}}\] is produced. i.e. the mass of \[{\text{NX}}\] is $206{\text{ gm}}$. And the molar mass of \[{\text{NX}}\] is $103{\text{ gm/mol}}$. Thus,
${\text{Number of moles of NX}} = \dfrac{{206{\text{ gm}}}}{{103{\text{ gm/mol}}}}$
${\text{Number of moles of NX}} = 2{\text{ mol}}$
Thus, the number of moles of \[{\text{NX}}\] are $2{\text{ mol}}$.
From equation (6), we can see that the mole ratio of ${\text{M}}$ (metal) and \[{\text{NX}}\] is $3:1$. i.e. three moles of ${\text{M}}$ (metal) are required to produce one mole of \[{\text{NX}}\]. But the number of moles of \[{\text{NX}}\] are $2{\text{ mol}}$.
Thus, to produce $2{\text{ mol}}$ of \[{\text{NX}}\], $6{\text{ mol}}$ of ${\text{M}}$ (metal) are required.
Now, we will calculate the mass of ${\text{M}}$ (metal) using the equation as follows:
${\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {{\text{gm}}} \right)}}{{{\text{Molar mass}}\left( {{\text{gm/mol}}} \right)}}$
${\text{Mass}}\left( {{\text{gm}}} \right) = {\text{Number of moles}}\left( {{\text{mol}}} \right) \times {\text{Molar mass}}\left( {{\text{gm/mol}}} \right)$
We are given that the atomic mass of ${\text{M}}$ (metal) is $56{\text{ gm/mol}}$. And $6{\text{ mol}}$ of ${\text{M}}$ (metal) are required. Thus,
${\text{Mass}} = 6{\text{ mol}} \times 56{\text{ gm/mol}}$
${\text{Mass}} = 336{\text{ gm}}$
Thus, the mass of ${\text{M}}$ (metal) consumed to produce $206{\text{ gm}}$ of \[{\text{NX}}\] is $336{\text{ gm}}$.
Thus, the correct option is (a) $336{\text{ gm}}$.
Note:
Remember to balance the equations correctly. Unbalanced equations can lead to wrong mole ratios leading to wrong answers. The molar mass of \[{\text{NX}}\] can be calculated using the given atomic weights.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

