
A mixture of $S{{O}_{2}}$, and ${{O}_{2}}$ in the molar ratio 16 : 1 is diffused through a pinhole for successive effusions three times to give a molar ratio 1 : 1 of diffused mixture. Which one is not correct if diffusion is made at the same P and T in each operation?
$I.$ Eight operations are needed to get 1 : 1 molar ratio.
$II.$ Rate of diffusion for$S{{O}_{2}}$:${{O}_{2}}$ after eight operations is 0.707.
$III.$ Six operations are needed to get 2 : 1 molar ratio for $S{{O}_{2}}$ and ${{O}_{2}}$ in diffusion mixture.
$IV.$ Rate of diffusion for $S{{O}_{2}}$ and ${{O}_{2}}$ after six operations is 2.41.
A. $I,II,III$
B. $II,III$
C. $I,III$
D. $IV$
Answer
535.8k+ views
Hint: Diffusion id the movement of molecules across concentration gradients. While, effusion is considered to be the movement of molecules between two containers.
Formula used: Rate of diffusion $\dfrac{{{r}_{1}}}{{{r}_{2}}}=\sqrt{\dfrac{{{M}_{2}}}{{{M}_{1}}}}$ where, M is the molar masses of 2 gases.
Complete step by step answer: We have been given two gases $S{{O}_{2}}$ and ${{O}_{2}}$, the initial molar ratio for them is 16 : 1 respectively. After successive effusions, the molar ratio become 1 : 1 times the diffusion mixture. Now we will see, for these gases which of the statements are correct. For this we will find out the rate of diffusion, keeping the molar ratios of initial and final concentration.
Now consider, $X\,\log \,{{f}_{1}}=\,\log \,\left[ \dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}\times \dfrac{{{n}_{{{O}_{2}}}}}{{{n}_{S{{O}_{2}}}}} \right]$ where ${{n}^{'}}$ is the initial molar ratios, and n is the final molar ratios.
Now, through formula of rate of diffusion, $X\,\log \,\sqrt{\dfrac{{{M}_{{{O}_{2}}}}}{{{M}_{S{{O}_{2}}}}}}=\,\log \,\left[ \dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}\times \dfrac{{{n}_{{{O}_{2}}}}}{{{n}_{S{{O}_{2}}}}} \right]$
Putting the molar masses of gases and ${{n}^{'}}$to be 1 : 1 and n to be 1 : 16, we have,
$X\,\log \,\sqrt{\dfrac{32}{64}}=\,\log \left[ \dfrac{1}{1}\times \dfrac{1}{16} \right]$, we have, X= 8
So, after 8 operation the rate, $\dfrac{{{n}_{1}}}{{{n}_{2}}}=\dfrac{{{r}_{1}}}{{{r}_{2}}}$ = 0.707.
Now if number of operations, X = 6, then, $6\,\log \,\sqrt{\dfrac{32}{64}}=\,\log \,\left[ \dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}\times \dfrac{{{n}_{{{O}_{2}}}}}{{{n}_{S{{O}_{2}}}}} \right]$,
So, $6\,\log \,\sqrt{\dfrac{32}{64}}=\,\log \,\left[ \dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}\times \dfrac{1}{16} \right]$,
Therefore, $\dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}$ = 2 : 1
So, the rate of diffusion is 0.707 ion each operation.
Hence, the statements, $I,II,III$ are correct, and option A is the right option.
Note: X is considered to be the number of operations, it can also be calculated by, ${{({{f}_{1}})}^{x}}=\dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}\times \dfrac{{{n}_{{{O}_{2}}}}}{{{n}_{S{{O}_{2}}}}}$ , where ${{n}^{'}}$ is the initial molar ratios, and n is the final molar ratios.
Formula used: Rate of diffusion $\dfrac{{{r}_{1}}}{{{r}_{2}}}=\sqrt{\dfrac{{{M}_{2}}}{{{M}_{1}}}}$ where, M is the molar masses of 2 gases.
Complete step by step answer: We have been given two gases $S{{O}_{2}}$ and ${{O}_{2}}$, the initial molar ratio for them is 16 : 1 respectively. After successive effusions, the molar ratio become 1 : 1 times the diffusion mixture. Now we will see, for these gases which of the statements are correct. For this we will find out the rate of diffusion, keeping the molar ratios of initial and final concentration.
Now consider, $X\,\log \,{{f}_{1}}=\,\log \,\left[ \dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}\times \dfrac{{{n}_{{{O}_{2}}}}}{{{n}_{S{{O}_{2}}}}} \right]$ where ${{n}^{'}}$ is the initial molar ratios, and n is the final molar ratios.
Now, through formula of rate of diffusion, $X\,\log \,\sqrt{\dfrac{{{M}_{{{O}_{2}}}}}{{{M}_{S{{O}_{2}}}}}}=\,\log \,\left[ \dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}\times \dfrac{{{n}_{{{O}_{2}}}}}{{{n}_{S{{O}_{2}}}}} \right]$
Putting the molar masses of gases and ${{n}^{'}}$to be 1 : 1 and n to be 1 : 16, we have,
$X\,\log \,\sqrt{\dfrac{32}{64}}=\,\log \left[ \dfrac{1}{1}\times \dfrac{1}{16} \right]$, we have, X= 8
So, after 8 operation the rate, $\dfrac{{{n}_{1}}}{{{n}_{2}}}=\dfrac{{{r}_{1}}}{{{r}_{2}}}$ = 0.707.
Now if number of operations, X = 6, then, $6\,\log \,\sqrt{\dfrac{32}{64}}=\,\log \,\left[ \dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}\times \dfrac{{{n}_{{{O}_{2}}}}}{{{n}_{S{{O}_{2}}}}} \right]$,
So, $6\,\log \,\sqrt{\dfrac{32}{64}}=\,\log \,\left[ \dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}\times \dfrac{1}{16} \right]$,
Therefore, $\dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}$ = 2 : 1
So, the rate of diffusion is 0.707 ion each operation.
Hence, the statements, $I,II,III$ are correct, and option A is the right option.
Note: X is considered to be the number of operations, it can also be calculated by, ${{({{f}_{1}})}^{x}}=\dfrac{{{n}^{'}}_{S{{O}_{2}}}}{{{n}^{'}}_{{{O}_{2}}}}\times \dfrac{{{n}_{{{O}_{2}}}}}{{{n}_{S{{O}_{2}}}}}$ , where ${{n}^{'}}$ is the initial molar ratios, and n is the final molar ratios.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

