
A matrix ‘A’ is given and it satisfies the given condition ${{A}^{3}}=0$. Find the value of $I+A+{{A}^{2}}$.
(a) I + A.
(b) ${{\left( I+A \right)}^{-1}}$.
(c) I – A.
(d) ${{\left( I-A \right)}^{-1}}$.
Answer
511.2k+ views
Hint: We start solving the problem by multiplying with ‘–1’ on both sides of ${{A}^{3}}=0$. We then add both sides with the Identity matrix. Now we take the product $\left( I-A \right).\left( I+A+{{A}^{2}} \right)$ and calculate it. We use the fact that if $A.B=I$, then $B={{A}^{-1}}$ and make subsequent arrangements to get the required result.
Complete step by step answer:
Given that we have matrix ‘A’ and it satisfies the condition ${{A}^{3}}=0$. We need to find the value of $I+A+{{A}^{2}}$.
$\Rightarrow $ ${{A}^{3}}=0$.
Let us multiply each side with ‘–1’.
$\Rightarrow $ $-1\times {{A}^{3}}=-1\times 0$.
$\Rightarrow $ $-{{A}^{3}}=0$.
We add the Identity matrix ‘I’ on both sides.
$\Rightarrow $ $I-{{A}^{3}}=I+0$.
$\Rightarrow $ $I-{{A}^{3}}=I$ ---(1).
Let us multiply $\left( I-A \right)$ and $\left( I+A+{{A}^{2}} \right)$ with each other.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I.\left( I+A+{{A}^{2}} \right)-A.\left( I+A+{{A}^{2}} \right)$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I+A+{{A}^{2}}-\left( A+{{A}^{2}}+{{A}^{3}} \right)$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I+A+{{A}^{2}}-A-{{A}^{2}}-{{A}^{3}}$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I-{{A}^{3}}$ ---(2).
We substitute the result obtained from equation (2) in equation (1).
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I$ ---(3).
We know that if $A.B=I$, then $B={{A}^{-1}}$. We use this result in equation (3).
$\Rightarrow $ $\left( I+A+{{A}^{2}} \right)={{\left( I-A \right)}^{-1}}$.
We got the value of $I+A+{{A}^{2}}$ as ${{\left( I-A \right)}^{-1}}$.
∴ If ${{A}^{3}}=0$ then the value of $I+A+{{A}^{2}}$ is equal to ${{\left( I-A \right)}^{-1}}$.
So, the correct answer is “Option D”.
Note: Here the matrix $\left( I-A \right)$ is considered as invertible while solving the problem. To say that the matrix $\left( I-A \right)$ invertible, we use the fact that for a nilpotent matrix of order ‘n’ we always have an matrix $\left( I-A \right)$ which is invertible. Here matrix ‘A’ is a nilpotent matrix of order 3 in the given problem.
Complete step by step answer:
Given that we have matrix ‘A’ and it satisfies the condition ${{A}^{3}}=0$. We need to find the value of $I+A+{{A}^{2}}$.
$\Rightarrow $ ${{A}^{3}}=0$.
Let us multiply each side with ‘–1’.
$\Rightarrow $ $-1\times {{A}^{3}}=-1\times 0$.
$\Rightarrow $ $-{{A}^{3}}=0$.
We add the Identity matrix ‘I’ on both sides.
$\Rightarrow $ $I-{{A}^{3}}=I+0$.
$\Rightarrow $ $I-{{A}^{3}}=I$ ---(1).
Let us multiply $\left( I-A \right)$ and $\left( I+A+{{A}^{2}} \right)$ with each other.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I.\left( I+A+{{A}^{2}} \right)-A.\left( I+A+{{A}^{2}} \right)$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I+A+{{A}^{2}}-\left( A+{{A}^{2}}+{{A}^{3}} \right)$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I+A+{{A}^{2}}-A-{{A}^{2}}-{{A}^{3}}$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I-{{A}^{3}}$ ---(2).
We substitute the result obtained from equation (2) in equation (1).
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I$ ---(3).
We know that if $A.B=I$, then $B={{A}^{-1}}$. We use this result in equation (3).
$\Rightarrow $ $\left( I+A+{{A}^{2}} \right)={{\left( I-A \right)}^{-1}}$.
We got the value of $I+A+{{A}^{2}}$ as ${{\left( I-A \right)}^{-1}}$.
∴ If ${{A}^{3}}=0$ then the value of $I+A+{{A}^{2}}$ is equal to ${{\left( I-A \right)}^{-1}}$.
So, the correct answer is “Option D”.
Note: Here the matrix $\left( I-A \right)$ is considered as invertible while solving the problem. To say that the matrix $\left( I-A \right)$ invertible, we use the fact that for a nilpotent matrix of order ‘n’ we always have an matrix $\left( I-A \right)$ which is invertible. Here matrix ‘A’ is a nilpotent matrix of order 3 in the given problem.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE

Who discovered the cell and how class 12 biology CBSE
