
A matrix ‘A’ is given and it satisfies the given condition ${{A}^{3}}=0$. Find the value of $I+A+{{A}^{2}}$.
(a) I + A.
(b) ${{\left( I+A \right)}^{-1}}$.
(c) I – A.
(d) ${{\left( I-A \right)}^{-1}}$.
Answer
590.4k+ views
Hint: We start solving the problem by multiplying with ‘–1’ on both sides of ${{A}^{3}}=0$. We then add both sides with the Identity matrix. Now we take the product $\left( I-A \right).\left( I+A+{{A}^{2}} \right)$ and calculate it. We use the fact that if $A.B=I$, then $B={{A}^{-1}}$ and make subsequent arrangements to get the required result.
Complete step by step answer:
Given that we have matrix ‘A’ and it satisfies the condition ${{A}^{3}}=0$. We need to find the value of $I+A+{{A}^{2}}$.
$\Rightarrow $ ${{A}^{3}}=0$.
Let us multiply each side with ‘–1’.
$\Rightarrow $ $-1\times {{A}^{3}}=-1\times 0$.
$\Rightarrow $ $-{{A}^{3}}=0$.
We add the Identity matrix ‘I’ on both sides.
$\Rightarrow $ $I-{{A}^{3}}=I+0$.
$\Rightarrow $ $I-{{A}^{3}}=I$ ---(1).
Let us multiply $\left( I-A \right)$ and $\left( I+A+{{A}^{2}} \right)$ with each other.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I.\left( I+A+{{A}^{2}} \right)-A.\left( I+A+{{A}^{2}} \right)$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I+A+{{A}^{2}}-\left( A+{{A}^{2}}+{{A}^{3}} \right)$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I+A+{{A}^{2}}-A-{{A}^{2}}-{{A}^{3}}$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I-{{A}^{3}}$ ---(2).
We substitute the result obtained from equation (2) in equation (1).
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I$ ---(3).
We know that if $A.B=I$, then $B={{A}^{-1}}$. We use this result in equation (3).
$\Rightarrow $ $\left( I+A+{{A}^{2}} \right)={{\left( I-A \right)}^{-1}}$.
We got the value of $I+A+{{A}^{2}}$ as ${{\left( I-A \right)}^{-1}}$.
∴ If ${{A}^{3}}=0$ then the value of $I+A+{{A}^{2}}$ is equal to ${{\left( I-A \right)}^{-1}}$.
So, the correct answer is “Option D”.
Note: Here the matrix $\left( I-A \right)$ is considered as invertible while solving the problem. To say that the matrix $\left( I-A \right)$ invertible, we use the fact that for a nilpotent matrix of order ‘n’ we always have an matrix $\left( I-A \right)$ which is invertible. Here matrix ‘A’ is a nilpotent matrix of order 3 in the given problem.
Complete step by step answer:
Given that we have matrix ‘A’ and it satisfies the condition ${{A}^{3}}=0$. We need to find the value of $I+A+{{A}^{2}}$.
$\Rightarrow $ ${{A}^{3}}=0$.
Let us multiply each side with ‘–1’.
$\Rightarrow $ $-1\times {{A}^{3}}=-1\times 0$.
$\Rightarrow $ $-{{A}^{3}}=0$.
We add the Identity matrix ‘I’ on both sides.
$\Rightarrow $ $I-{{A}^{3}}=I+0$.
$\Rightarrow $ $I-{{A}^{3}}=I$ ---(1).
Let us multiply $\left( I-A \right)$ and $\left( I+A+{{A}^{2}} \right)$ with each other.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I.\left( I+A+{{A}^{2}} \right)-A.\left( I+A+{{A}^{2}} \right)$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I+A+{{A}^{2}}-\left( A+{{A}^{2}}+{{A}^{3}} \right)$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I+A+{{A}^{2}}-A-{{A}^{2}}-{{A}^{3}}$.
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I-{{A}^{3}}$ ---(2).
We substitute the result obtained from equation (2) in equation (1).
$\Rightarrow $ $\left( I-A \right).\left( I+A+{{A}^{2}} \right)=I$ ---(3).
We know that if $A.B=I$, then $B={{A}^{-1}}$. We use this result in equation (3).
$\Rightarrow $ $\left( I+A+{{A}^{2}} \right)={{\left( I-A \right)}^{-1}}$.
We got the value of $I+A+{{A}^{2}}$ as ${{\left( I-A \right)}^{-1}}$.
∴ If ${{A}^{3}}=0$ then the value of $I+A+{{A}^{2}}$ is equal to ${{\left( I-A \right)}^{-1}}$.
So, the correct answer is “Option D”.
Note: Here the matrix $\left( I-A \right)$ is considered as invertible while solving the problem. To say that the matrix $\left( I-A \right)$ invertible, we use the fact that for a nilpotent matrix of order ‘n’ we always have an matrix $\left( I-A \right)$ which is invertible. Here matrix ‘A’ is a nilpotent matrix of order 3 in the given problem.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

