Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

A man starts from O moves 500 m turns by ${{60}^{\circ }}$and moves 500 m again turns by ${{60}^{\circ }}$ and moves 500 m and so on. Find the displacement after (i) ${{5}^{th}}$ turn, (ii) ${{3}^{rd}}$ turn?

Answer
VerifiedVerified
514.2k+ views
Hint: The entire path travelled by the man makes a hexagon. The displacement at the 5th and the 3rd turn can be calculated by the magnitude of resultant vector magnitude calculation. And as we know the resultant is the vector sum of two or more vectors. It is the result of adding two or more vectors together.

Complete step by step answer:
seo images

(i) ${{5}^{th}}$ turn
The displacement will be equal to the vector: $\overset{\to }{\mathop{OE}}\,$ as shown in the figure.
Clearly, we can say that the displacement of ${{5}^{th}}$ turn is 500 m because the man moves at turns of 500 m.

(ii) ${{3}^{rd}}$ turn
The displacement will be equal to the vector: $\overset{\to }{\mathop{OC}}\,$ as shown in the figure.
We can say that:
$\overset{\to }{\mathop{OC}}\,=\overset{\to }{\mathop{OA}}\,+\overset{\to }{\mathop{AC}}\,$
So, $\left| \overset{\to }{\mathop{OC}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{OA}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{AC}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{OA}}\, \right|\left| \overset{\to }{\mathop{AC}}\, \right|\cos {{90}^{\circ }}}$
Also, $\overset{\to }{\mathop{AC}}\,=\overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{BC}}\,$
So, $\left| \overset{\to }{\mathop{AC}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{AB}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{BC}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{AB}}\, \right|\left| \overset{\to }{\mathop{BC}}\, \right|\cos {{60}^{\circ }}}$
Since each turn is of 500m, so $\left| \overset{\to }{\mathop{AB}}\, \right|=\left| \overset{\to }{\mathop{BC}}\, \right|=\left| \overset{\to }{\mathop{OA}}\, \right|=500$
So,
$\begin{align}
  & \left| \overset{\to }{\mathop{AC}}\, \right|=\sqrt{{{\left( 500 \right)}^{2}}+{{\left( 500 \right)}^{2}}+2\left( 500 \right)\left( 500 \right)\dfrac{1}{2}} \\
 & =500\sqrt{3}m
\end{align}$
Now,
$\begin{align}
  & \left| \overset{\to }{\mathop{OC}}\, \right|=\sqrt{{{\left( 500 \right)}^{2}}+{{\left( 500\sqrt{3} \right)}^{2}}+2\left( 500 \right)\left( 500\sqrt{3} \right)\left( 0 \right)} \\
 & =1000m
\end{align}$

Note:
In order to solve this question, remember to calculate the magnitude of a resultant vector. The displacement at the given turns are the resultant of vectors drawn from the tail and head of both vectors.