
A man starts from O moves 500 m turns by ${{60}^{\circ }}$and moves 500 m again turns by ${{60}^{\circ }}$ and moves 500 m and so on. Find the displacement after (i) ${{5}^{th}}$ turn, (ii) ${{3}^{rd}}$ turn?
Answer
577.8k+ views
Hint: The entire path travelled by the man makes a hexagon. The displacement at the 5th and the 3rd turn can be calculated by the magnitude of resultant vector magnitude calculation. And as we know the resultant is the vector sum of two or more vectors. It is the result of adding two or more vectors together.
Complete step by step answer:
(i) ${{5}^{th}}$ turn
The displacement will be equal to the vector: $\overset{\to }{\mathop{OE}}\,$ as shown in the figure.
Clearly, we can say that the displacement of ${{5}^{th}}$ turn is 500 m because the man moves at turns of 500 m.
(ii) ${{3}^{rd}}$ turn
The displacement will be equal to the vector: $\overset{\to }{\mathop{OC}}\,$ as shown in the figure.
We can say that:
$\overset{\to }{\mathop{OC}}\,=\overset{\to }{\mathop{OA}}\,+\overset{\to }{\mathop{AC}}\,$
So, $\left| \overset{\to }{\mathop{OC}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{OA}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{AC}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{OA}}\, \right|\left| \overset{\to }{\mathop{AC}}\, \right|\cos {{90}^{\circ }}}$
Also, $\overset{\to }{\mathop{AC}}\,=\overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{BC}}\,$
So, $\left| \overset{\to }{\mathop{AC}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{AB}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{BC}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{AB}}\, \right|\left| \overset{\to }{\mathop{BC}}\, \right|\cos {{60}^{\circ }}}$
Since each turn is of 500m, so $\left| \overset{\to }{\mathop{AB}}\, \right|=\left| \overset{\to }{\mathop{BC}}\, \right|=\left| \overset{\to }{\mathop{OA}}\, \right|=500$
So,
$\begin{align}
& \left| \overset{\to }{\mathop{AC}}\, \right|=\sqrt{{{\left( 500 \right)}^{2}}+{{\left( 500 \right)}^{2}}+2\left( 500 \right)\left( 500 \right)\dfrac{1}{2}} \\
& =500\sqrt{3}m
\end{align}$
Now,
$\begin{align}
& \left| \overset{\to }{\mathop{OC}}\, \right|=\sqrt{{{\left( 500 \right)}^{2}}+{{\left( 500\sqrt{3} \right)}^{2}}+2\left( 500 \right)\left( 500\sqrt{3} \right)\left( 0 \right)} \\
& =1000m
\end{align}$
Note:
In order to solve this question, remember to calculate the magnitude of a resultant vector. The displacement at the given turns are the resultant of vectors drawn from the tail and head of both vectors.
Complete step by step answer:
(i) ${{5}^{th}}$ turn
The displacement will be equal to the vector: $\overset{\to }{\mathop{OE}}\,$ as shown in the figure.
Clearly, we can say that the displacement of ${{5}^{th}}$ turn is 500 m because the man moves at turns of 500 m.
(ii) ${{3}^{rd}}$ turn
The displacement will be equal to the vector: $\overset{\to }{\mathop{OC}}\,$ as shown in the figure.
We can say that:
$\overset{\to }{\mathop{OC}}\,=\overset{\to }{\mathop{OA}}\,+\overset{\to }{\mathop{AC}}\,$
So, $\left| \overset{\to }{\mathop{OC}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{OA}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{AC}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{OA}}\, \right|\left| \overset{\to }{\mathop{AC}}\, \right|\cos {{90}^{\circ }}}$
Also, $\overset{\to }{\mathop{AC}}\,=\overset{\to }{\mathop{AB}}\,+\overset{\to }{\mathop{BC}}\,$
So, $\left| \overset{\to }{\mathop{AC}}\, \right|=\sqrt{{{\left| \overset{\to }{\mathop{AB}}\, \right|}^{2}}+{{\left| \overset{\to }{\mathop{BC}}\, \right|}^{2}}+2\left| \overset{\to }{\mathop{AB}}\, \right|\left| \overset{\to }{\mathop{BC}}\, \right|\cos {{60}^{\circ }}}$
Since each turn is of 500m, so $\left| \overset{\to }{\mathop{AB}}\, \right|=\left| \overset{\to }{\mathop{BC}}\, \right|=\left| \overset{\to }{\mathop{OA}}\, \right|=500$
So,
$\begin{align}
& \left| \overset{\to }{\mathop{AC}}\, \right|=\sqrt{{{\left( 500 \right)}^{2}}+{{\left( 500 \right)}^{2}}+2\left( 500 \right)\left( 500 \right)\dfrac{1}{2}} \\
& =500\sqrt{3}m
\end{align}$
Now,
$\begin{align}
& \left| \overset{\to }{\mathop{OC}}\, \right|=\sqrt{{{\left( 500 \right)}^{2}}+{{\left( 500\sqrt{3} \right)}^{2}}+2\left( 500 \right)\left( 500\sqrt{3} \right)\left( 0 \right)} \\
& =1000m
\end{align}$
Note:
In order to solve this question, remember to calculate the magnitude of a resultant vector. The displacement at the given turns are the resultant of vectors drawn from the tail and head of both vectors.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

