Answer
Verified
420.3k+ views
Hint: Here in this question we need to simply assume the man’s income to be any number or the variable and then apply the above conditions and get the original and new values of the expenditure and his savings. For example: If we assume the man’s income as ${\text{Rs100}}$ then according to the given income we can calculate his original expenditure. Similarly if we increase the income by $20\% $ his new income becomes ${\text{Rs120}}$ and again find the same expenditure and the saving.
Now we can solve the percent increase in savings by the formula${\text{percent increase in savings}} = \dfrac{{{\text{new saving}} - {\text{old saving}}}}{{{\text{old saving}}}} \times 100\% $
Complete step-by-step answer:
Here we are given that man spends $75\% $ of his income. This income is increased by $20\% $ and he increases his expenditure by$10\% $.
Here we need to find the percentage increase in the savings. So first of all we need to assume the income as any amount or any variable and with respect to that we can calculate the percentage increase in the savings of a man.
So let the income of the man$ = {\text{Rs100}}$
He spends $75\% $ of his income which means he saves rest of the income which is $(100 - 75) = 25\% $ of his total income.
His expenditure$ = 75\% {\text{ of 100}} = {\text{Rs }}75$
So his savings$ = 25\% {\text{ of Rs100}}$$ = \dfrac{{25}}{{100}}(100) = {\text{Rs 25}}$
So his original savings is ${\text{Rs 25}}$
Now we know that his income is increased by $20\% $
So the new income
$
= 100 + 20\% {\text{ of 100}} \\
= 100 + \dfrac{{20}}{{100}}(100) = 100 + 20 = {\text{Rs120}} \\
$
Now his expenditure is increased by $10\% $
So his new expenditure$ = {\text{original expenditure}} + {\text{10\% of original expenditure}}$
So we get new expenditure$ = 75 + \dfrac{{10}}{{100}}(75) = 75 + 7.5 = 82.5$
New saving
$
= {\text{new income}} - {\text{new expenditure}} \\
= 120 - 82.5 \\
= 37.5 \\
$
So percent increase$ = \dfrac{{{\text{new saving}} - {\text{original saving}}}}{{{\text{original saving}}}}(100)\% $
$\dfrac{{37.5 - 25}}{{25}} \times 100\% $$ = \dfrac{{12.5}}{{25}} \times 100\% = 50\% $
Hence his increase in saving is $50\% $
Note: Here in this type of the problem student can make a mistake in getting the statement properly. So students must analyse the question properly and for the new saving we need to subtract the new expenditure from the new income of the person not from the assumed income. So here the student must be aware of the situation.
Now we can solve the percent increase in savings by the formula${\text{percent increase in savings}} = \dfrac{{{\text{new saving}} - {\text{old saving}}}}{{{\text{old saving}}}} \times 100\% $
Complete step-by-step answer:
Here we are given that man spends $75\% $ of his income. This income is increased by $20\% $ and he increases his expenditure by$10\% $.
Here we need to find the percentage increase in the savings. So first of all we need to assume the income as any amount or any variable and with respect to that we can calculate the percentage increase in the savings of a man.
So let the income of the man$ = {\text{Rs100}}$
He spends $75\% $ of his income which means he saves rest of the income which is $(100 - 75) = 25\% $ of his total income.
His expenditure$ = 75\% {\text{ of 100}} = {\text{Rs }}75$
So his savings$ = 25\% {\text{ of Rs100}}$$ = \dfrac{{25}}{{100}}(100) = {\text{Rs 25}}$
So his original savings is ${\text{Rs 25}}$
Now we know that his income is increased by $20\% $
So the new income
$
= 100 + 20\% {\text{ of 100}} \\
= 100 + \dfrac{{20}}{{100}}(100) = 100 + 20 = {\text{Rs120}} \\
$
Now his expenditure is increased by $10\% $
So his new expenditure$ = {\text{original expenditure}} + {\text{10\% of original expenditure}}$
So we get new expenditure$ = 75 + \dfrac{{10}}{{100}}(75) = 75 + 7.5 = 82.5$
New saving
$
= {\text{new income}} - {\text{new expenditure}} \\
= 120 - 82.5 \\
= 37.5 \\
$
So percent increase$ = \dfrac{{{\text{new saving}} - {\text{original saving}}}}{{{\text{original saving}}}}(100)\% $
$\dfrac{{37.5 - 25}}{{25}} \times 100\% $$ = \dfrac{{12.5}}{{25}} \times 100\% = 50\% $
Hence his increase in saving is $50\% $
Note: Here in this type of the problem student can make a mistake in getting the statement properly. So students must analyse the question properly and for the new saving we need to subtract the new expenditure from the new income of the person not from the assumed income. So here the student must be aware of the situation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Difference Between Plant Cell and Animal Cell